首页> 外文OA文献 >An MPCA/LDA Based Dimensionality Reduction Algorithm for Face Recognition
【2h】

An MPCA/LDA Based Dimensionality Reduction Algorithm for Face Recognition

机译:基于MPCA / LDA的人脸识别降维算法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

We proposed a face recognition algorithm based on both the multilinear principal component analysis (MPCA) and linear discriminant analysis (LDA). Compared with current traditional existing face recognition methods, our approach treats face images as multidimensional tensor in order to find the optimal tensor subspace for accomplishing dimension reduction. The LDA is used to project samples to a new discriminant feature space, while the K nearest neighbor (KNN) is adopted for sample set classification. The results of our study and the developed algorithm are validated with face databases ORL, FERET, and YALE and compared with PCA, MPCA, and PCA + LDA methods, which demonstrates an improvement in face recognition accuracy.
机译:我们提出了一种基于多线性主成分分析(MPCA)和线性判别分析(LDA)的面部识别算法。与当前传统的现有人脸识别方法相比,我们的方法将人脸图像视为多维张量,以便找到最佳张量子空间以完成降维。 LDA用于将样本投影到新的判别特征空间,而K最近邻(KNN)用于样本集分类。我们的研究结果和开发的算法已通过人脸数据库ORL,FERET和YALE进行了验证,并与PCA,MPCA和PCA + LDA方法进行了比较,从而证明了人脸识别精度的提高。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号