首页> 外文OA文献 >Control strategies and power electronics in a low-cost electric vehicle propulson system employing a brushless DC machine
【2h】

Control strategies and power electronics in a low-cost electric vehicle propulson system employing a brushless DC machine

机译:采用无刷直流电机的低成本电动汽车推进系统中的控制策略和电力电子设备

摘要

Battery-powered electric vehicles (BEVs) are a promising part of the solutions to urban pollution and global warming. Existing problems of BEVs are short drive range and high cost. Energy and power control strategies in EV propulsion remain a substantial research topic which require further investigation and power electronics plays a key role in EV development. This thesis studies the control strategies and power electronics for a short range, low cost EV employing high efficiency permanent magnet axial flux brushless dc motor (BDCM). Many of the technologies presented can be used in more general applications. Based on the drive cycle data obtained from an ICE vehicle and its analysis, a novel energy and power management scheme has been proposed. The proposed energy and power management scheme employs the newly developed non-flowing zinc-bromine battery (NFZBB) and ultracapacitors (UCs). NFZBBs are optimized for specific energy, low cost and long life. Ultracapacitors featuring high power density and long life are used to complement the NFZBB to achieve good acceleration performance at low speeds. The thesis shows how combining the two different types of energy storage can optimize the EV propulsion system to achieve high energy for drive range, high power for good acceleration performance, long lifetime, and low cost. A novel multifunctional dc-dc converter topology has been proposed for the overall energy and power control. This single, simple dc-dc converter is used for both the control of the energy which is drawn out of and placed into the ultracapacitors and the speed extension of the BDCM. Several advanced control technologies of BDCM are studied. Zero Voltage Transition (ZVT) soft-switching techniques are utilized in the multifunctional dc-dc converter to achieve high efficiency, reduction of volume and weight, and lower electromagnetic interference (EMI) level. A prototype of the ZVT dc-dc converter with 96% efficiency has been developed. At high power levels, due to large dimensions of ferrite cores and air gaps, the influence of leakage flux and fringing flux on the inductor design within the dc-dc converter becomes significant, and is difficult to predict accurately. With conventional design of high power ferrite cored inductors, difficulty exists in achieving a satisfactory overall performance. A novel design for high power ferrite cored inductors employing a dual-coil or distributed winding scheme is proposed by the author to combat the problems. Results from both 3-Dimensional (3D) finite element analysis (FEA) and measurement verify the viability of the novel design for high power inductors. The proposed inductor design allows better optimization by reducing the localization of saturation, leakage flux, and EMI levels, achieving good utilization of the magnetic cores. A new intelligent gate drive module for high power IGBTs has been developed and presented. This module features high current capacity, powerful functions, high performance, wide application, and convenience of use, and is suitable for high power applications such as in EV drives. The detailed functions, operation, performance, and practical application issues are addressed. A soft-switched on-board EV battery charger with unity power factor has been developed. It employs a zero-current-switching (ZCS) boost converter with power factor correction (PFC) and an asymmetrically controlled zero-voltage-switching (ZVS) half-bridge (HB) dc-dc converter in cascade. Several state-of-the-art power electronics techniques are used. They include power factor correction, a ZVS technique requiring few additional components, control of steady-state duty cycle of the chargeru27s dc-dc converter for high efficiency, a novel active pre-load with minimized power rate, and an optimized charging profile.
机译:电池供电的电动汽车(BEV)是解决城市污染和全球变暖问题的有希望的一部分。 BEV的现有问题是行驶距离短和成本高。电动汽车推进中的能量和功率控制策略仍然是一个重要的研究课题,需要进一步研究,而电力电子技术在电动汽车的发展中起着关键作用。本文研究了采用高效永磁轴向磁通无刷直流电动机(BDCM)的短程低成本电动汽车的控制策略和电力电子技术。提出的许多技术都可以在更一般的应用中使用。基于从内燃机车获得的行驶周期数据及其分析,提出了一种新颖的能源和动力管理方案。拟议的能源和电力管理方案采用了新开发的不流动锌溴电池(NFZBB)和超级电容器(UCs)。 NFZBB已针对特定能量,低成本和长寿命进行了优化。具有高功率密度和长寿命的超级电容器可用于补充NFZBB,以在低速下实现良好的加速性能。本文说明了如何将两种不同类型的储能器相结合如何优化电动汽车推进系统,以实现驱动范围内的高能量,实现良好加速性能的高功率,长寿命和低成本。提出了一种新颖的多功能DC-DC转换器拓扑,用于整体能量和功率控制。这个单一,简单的dc-dc转换器既用于控制从超级电容器中取出并放入超级电容器中的能量,又用于BDCM的速度扩展。研究了BDCM的几种先进控制技术。多功能DC-DC转换器采用零电压转换(ZVT)软开关技术来实现高效率,减小体积和重量并降低电磁干扰(EMI)等级。已开发出效率为96%的ZVT DC-DC转换器的原型。在高功率水平下,由于铁氧体磁芯的尺寸较大且存在气隙,因此漏磁通和边缘磁通对DC-DC转换器内电感器设计的影响变得很大,并且难以准确预测。对于大功率铁氧体芯电感器的常规设计,难以获得令人满意的整体性能。为了解决这些问题,作者提出了一种采用双线圈或分布式绕组方案的大功率铁氧体磁芯电感器的新颖设计。三维(3D)有限元分析(FEA)和测量结果均证明了该新型设计用于大功率电感器的可行性。所提出的电感器设计可通过降低饱和度,漏磁通和EMI电平的局限性来实现更好的优化,从而实现磁芯的良好利用。已经开发并展示了一种用于大功率IGBT的新型智能栅极驱动模块。该模块具有高电流容量,强大功能,高性能,广泛应用和使用方便的特点,适用于诸如EV驱动器等大功率应用。详细的功能,操作,性能和实际应用问题得到解决。已经开发出具有统一功率因数的软开关车载EV电池充电器。它采用具有功率因数校正(PFC)的零电流开关(ZCS)升压转换器和级联的非对称控制零电压开关(ZVS)半桥(HB)dc-dc转换器。使用了几种最先进的电力电子技术。它们包括功率因数校正,需要很少的附加组件的ZVS技术,控制充电器DC-DC转换器的稳态占空比以实现高效率,新颖的有源预负载,最小化的电费率以及优化的充电特性。

著录项

  • 作者

    Yan Xinxiang;

  • 作者单位
  • 年度 2000
  • 总页数
  • 原文格式 PDF
  • 正文语种
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号