首页> 外文OA文献 >DevStaR: high-throughput quantification of C. elegans developmental stages.
【2h】

DevStaR: high-throughput quantification of C. elegans developmental stages.

机译:DevStaR:秀丽隐杆线虫发育阶段的高通量定量。

摘要

We present DevStaR, an automated computer vision and machine learning system that provides rapid, accurate, and quantitative measurements of C. elegans embryonic viability in high-throughput (HTP) applications. A leading genetic model organism for the study of animal development and behavior, C. elegans is particularly amenable to HTP functional genomic analysis due to its small size and ease of cultivation, but the lack of efficient and quantitative methods to score phenotypes has become a major bottleneck. DevStaR addresses this challenge using a novel hierarchical object recognition machine that rapidly segments, classifies, and counts animals at each developmental stage in images of mixed-stage populations of C. elegans. Here, we describe the algorithmic design of the DevStaR system and demonstrate its performance in scoring image data acquired in HTP screens.
机译:我们提出了DevStaR,这是一种自动化的计算机视觉和机器学习系统,可在高通量(HTP)应用中提供快速,准确和定量的秀丽隐杆线虫胚胎生存能力测量。秀丽隐杆线虫是一种用于研究动物发育和行为的领先遗传模型生物,由于其体积小且易于培养,特别适合于HTP功能基因组分析,但缺乏有效和定量的表型评分方法已成为主要问题瓶颈。 DevStaR使用新颖的分层对象识别机器解决了这一挑战,该机器可以在秀丽隐杆线虫混合阶段种群的图像中的每个发育阶段快速对动物进行分段,分类和计数。在这里,我们描述了DevStaR系统的算法设计,并展示了其对HTP屏幕中获取的图像数据进行评分的性能。

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号