首页> 外文OA文献 >Sharing Policies in Multiuser Privacy Scenarios:Incorporating Context, Preferences, and Arguments in Decision Making
【2h】

Sharing Policies in Multiuser Privacy Scenarios:Incorporating Context, Preferences, and Arguments in Decision Making

机译:在多用户隐私方案中共享策略:在决策中纳入上下文,首选项和参数

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Social network services (SNSs) enable users to conveniently share personal information. Often, the information shared concerns other people, especially other members of the SNS. In such situations, two or more people can have conflicting privacy preferences; thus, an appropriate sharing policy may not be apparent. We identify such situations as multiuser privacy scenarios. Current approaches propose finding a sharing policy through preference aggregation. However, studies suggest that users feel more confident in their decisions regarding sharing when they know the reasons behind each other’s preferences. The goals of this paper are (1) understanding how people decide the appropriate sharing policy in multiuser scenarios where arguments are employed, and (2) developing a computational model to predict an appropriate sharing policy for a given scenario. We report on a study that involved a survey of 988 Amazon Mechanical Turk (MTurk) users about a variety of multiuser scenarios and the optimal sharing policy for each scenario. Our evaluation of the participants’ responses reveals that contextual factors, user preferences, and arguments influence the optimal sharing policy in a multiuser scenario. We develop and evaluate an inference model that predicts the optimal sharing policy given the three types of features. We analyze the predictions of our inference model to uncover potential scenario types that lead to incorrect predictions, and to enhance our understanding of when multiuser scenarios are more or less prone to dispute.
机译:社交网络服务(SNS)使用户可以方便地共享个人信息。通常,共享的信息与其他人特别是SNS的其他成员有关。在这种情况下,两个或多个人的隐私首选项可能会冲突;因此,适当的共享策略可能并不明显。我们将这种情况识别为多用户隐私方案。当前的方法提议通过偏好聚合来找到共享策略。但是,研究表明,当用户知道彼此的偏好背后的原因时,他们会对共享决定更加自信。本文的目标是(1)了解人们如何在采用参数的多用户方案中决定适当的共享策略,以及(2)开发计算模型以预测给定方案的适当共享策略。我们报告了一项研究,该研究涉及对988位Amazon Mechanical Turk(MTurk)用户的调查,涉及各种多用户方案以及每种方案的最佳共享策略。我们对参与者响应的评估表明,在多用户情况下,上下文因素,用户偏好和论点会影响最佳共享策略。我们开发并评估了一种推理模型,该模型可根据三种特征来预测最佳共享策略。我们分析推理模型的预测,以发现导致错误预测的潜在方案类型,并增强我们对多用户方案何时或多或少容易产生争议的理解。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号