首页> 外文OA文献 >A Real-Time Driver Identification System based on Artificial Neural Networks and Cepstral Analysis
【2h】

A Real-Time Driver Identification System based on Artificial Neural Networks and Cepstral Analysis

机译:基于人工神经网络和倒谱分析的驾驶员实时识别系统

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The availability of advanced driver assistance systems (ADAS), for safety and well-being, is becoming increasingly important for avoiding traffic accidents caused by fatigue, stress, or distractions. For this reason, automatic identification of a driver from among a group of various drivers (i.e. real-time driver identification) is a key factor in the development of ADAS, mainly when the driver’s comfort and security is also to be taken into account. The main focus of this work is the development of embedded electronic systems for in-vehicle deployment of driver identification models. We developed a hybrid model based on artificial neural networks (ANN), and cepstral feature extraction techniques, able to recognize the driving style of different drivers. Results obtained show that the system is able to perform real-time driver identification using non-intrusive driving behavior signals such as brake pedal signals and gas pedal signals. The identification of a driver from within groups with a reduced number of drivers yields promising identification rates (e.g. 3-driver group yield 84.6 %). However, real-time development of ADAS requires very fast electronic systems. To this end, an FPGA-based hardware coprocessor for acceleration of the neural classifier has been developed. The coprocessor core is able to compute the whole ANN in less than 4 μs.
机译:先进的驾驶员辅助系统(ADAS)的安全性和舒适性对于避免疲劳,压力或分心引起的交通事故变得越来越重要。因此,主要是在考虑驾驶员的舒适性和安全性时,从各种驾驶员中自动识别驾驶员(即实时驾驶员识别)是ADAS开发的关键因素。这项工作的主要重点是嵌入式电子系统的开发,该电子系统用于在车内部署驾驶员识别模型。我们开发了一种基于人工神经网络(ANN)和倒谱特征提取技术的混合模型,能够识别不同驾驶员的驾驶方式。获得的结果表明,该系统能够使用非侵入性驾驶行为信号(例如,制动踏板信号和油门踏板信号)执行实时驾驶员识别。从驾驶员数量减少的组中识别驾驶员,产生了有希望的识别率(例如,三驾驶员组的产率为84.6%)。但是,ADAS的实时开发需要非常快速的电子系统。为此,已经开发了用于加速神经分类器的基于FPGA的硬件协处理器。协处理器内核能够在不到4μs的时间内计算出整个ANN。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号