首页> 外文OA文献 >Zinc rich paint as anode system for cathodic protection (CP) of reinforced concrete structures and development of corrosion/CP monitoring probes
【2h】

Zinc rich paint as anode system for cathodic protection (CP) of reinforced concrete structures and development of corrosion/CP monitoring probes

机译:富锌涂料作为钢筋混凝土结构阴极保护(CP)的阳极系统以及腐蚀/ CP监测探头的开发

摘要

Since mid-80‟s cathodic protection (CP) has been recognised as the „‟only technique known to stop corrosion regardless of the levels of chloride contamination in concrete‟‟ (FHWA, 1982) and is proved to be the most cost effective means to extend the useful life of the structure.Cathodic protection is an electrochemical technique to stop/mitigate corrosion by supplying „current‟ from an external source in order to suppress the „internally generated‟ current flow due to corrosion processes. The „external‟ current source could be obtained simply by coupling the steel to another electrochemically more active metal, e.g. zinc; alternatively the „external‟ current may be derived from a mains operated low voltage DC power source, viz. transformer/rectifier unit. These two different approaches to supply „external‟ current to stop corrosion are generically termed as:„Sacrificial Anode Cathodic Protection (SACP)‟ system and„Impressed Current Cathodic Protection (ICCP)‟ system, respectively.Both approaches have proved to be feasible, but the impressed current CP system offers greater flexibility with regard to its ability to provide the necessary current in situations where concrete resistivity is relatively high and variable. The sacrificial anode system is most effective if the concrete resistivity is very low or the anode is placed in a very low resistivity environment such as soil with low resistivity, as the inherent driving voltage is low e.g. the potential difference between zinc and corroding steel in concrete is limited to approximately 0.7 volts.Other contra-distinction between the two approaches are that the design life of the sacrificial anode systems are usually range between 10 -15 years; on the other hand the design life of the ICCP systems could be well in excess of 60+ years ( depending on the type of anode system).Page 2Following the successful application of first CP system, based on impressed current CP (ICCP), on a bridge deck in California, USA 1973, the technology has advanced significantly, particularly the anode systems (which is the main arbiter of a CP system) to deliver the protection current efficiently providing adequate protection (i.e. meeting the criteria recommended in BS EN ISO 12696: 2012 and other International Standards). Most of the CP installations worldwide are operating in ICCP mode. However, due to the escalating cost of anode systems and associated external power supply as well as monitoring/control units for ICCP installation has led researchers to actively pursue different means of developing low cost anode systems. Researchers have mainly focused on sacrificial anode CP (SACP) systems, as SACP does not require an external power supply and control units, but the drawback to this anode system is that it has a shorter life span (usually 10 -15 years compared to 60+ years for ICCP anodes).This work describes the development of an ICCP anode system design utilising commercially available zinc rich paint (ZRP) as a primary anode material offering an innovative but considerably low cost alternative to currently used materials for ICCP anode systems. It also describes the development of a simple and low cost „multifunctional‟ probe for monitoring the performance of the installed CP system, among other functions, such as LPR measurements, macrocell corrosion current measurement, E-log I tests for assessing the current requirements for CP design. For these functions both laboratory investigations and field trial on real life structure were employed
机译:自80年代中期以来,阴极保护(CP)被认为是“已知的唯一一种腐蚀方法,无论混凝土中氯化物的污染程度如何,都能阻止腐蚀”(FHWA,1982年),并被证明是最具成本效益的方法阴极保护是一种电化学技术,通过从外部来源提供“电流”来停止/减轻腐蚀,以抑制由于腐蚀过程而产生的“内部产生”电流。简单地通过将钢与另一种电化学活性更高的金属(例如金属)偶联,即可获得“外部”电流源。锌或者,“外部”电流可以来自市电运行的低压直流电源,即。变压器/整流器单元。这两种提供“外部”电流以阻止腐蚀的方法通常分别称为:“牺牲阳极阴极保护(SACP)”系统和“强电流阴极保护(ICCP)”系统。这两种方法均被证明是可行的,但是,在混凝土电阻率相对较高且变化不定的情况下,给人留下深刻印象的电流CP系统在提供必要电流的能力方面具有更大的灵活性。如果混凝土的电阻率非常低,或者将阳极放置在电阻率非常低的环境(例如土壤的电阻率低)中,则牺牲阳极系统是最有效的,因为其固有的驱动电压较低。混凝土中锌和腐蚀钢之间的电势差限制在0.7伏左右。两种方法之间的另一个矛盾之处是牺牲阳极系统的设计寿命通常在10 -15年之间;另一方面,ICCP系统的设计寿命可能会超过60年以上(取决于阳极系统的类型)。第2页在基于当前CP(ICCP)的第一个CP系统成功应用之后, 1973年,美国加利福尼亚州的一座桥面,该技术取得了显着进步,特别是阳极系统(这是CP系统的主要仲裁者)可以有效地提供保护电流,从而提供足够的保护(即满足BS EN ISO 12696中推荐的标准) :2012年和其他国际标准)。全球大多数CP安装都以ICCP模式运行。然而,由于阳极系统和相关的外部电源以及用于ICCP安装的监视/控制单元的成本不断上涨,导致研究人员积极寻求开发低成本阳极系统的不同方法。研究人员主要集中在牺牲阳极CP(SACP)系统上,因为SACP不需要外部电源和控制单元,但是这种阳极系统的缺点是使用寿命较短(通常为60到10 -15年) ICCP阳极+年)。这项工作描述了ICCP阳极系统设计的开发,该系统使用市售的富锌涂料(ZRP)作为主要阳极材料,为ICCP阳极系统目前使用的材料提供了创新但成本较低的替代品。它还描述了一种用于监视已安装CP系统性能的简单且低成本的“多功能”探头的开发,以及其他功能,例如LPR测量,宏单元腐蚀电流测量,用于评估当前电流需求的E-log I测试CP设计。为实现这些功能,采用了实验室调查和对现实生活结构的现场试验

著录项

  • 作者

    Das S.C.;

  • 作者单位
  • 年度 2012
  • 总页数
  • 原文格式 PDF
  • 正文语种 English
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号