首页> 外文OA文献 >Energy Consumption Data Based Machine Anomaly Detection
【2h】

Energy Consumption Data Based Machine Anomaly Detection

机译:基于能耗数据的机器异常检测

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The ever increasing of product development and the scarcity of the energy resources that those manufacturing activities heavily rely on have made it of great significance the study on how to improve the energy efficiency in manufacturing environment. Energy consumption sensing and collection enablesthe development of effective solutions to higher energy efficiency. Further, it is found that the data on energy consumption of manufacturing machines also contains the information on the conditions of these machines. In this paper, methods of machine anomaly detection based on energy consumption information are developed and applied to cases on our Syil X4 computer numerical control (CNC) milling machine. Further, given massive amount of energy consumption data from large amount machining tasks, the proposed algorithms are being implemented on a Storm and Hadoop based framework aiming at online realtime machine anomaly detection.
机译:这些产品生产活动的不断增长和制造活动所严重依赖的能源的稀缺性,对于研究如何提高制造环境中的能源效率具有重要意义。能源消耗感测和收集可以开发有效的解决方案,以提高能源效率。此外,发现制造机器的能耗数据还包含有关这些机器的状况的信息。本文开发了基于能耗信息的机器异常检测方法,并将其应用于我们的Syil X4计算机数控(CNC)铣床案例。此外,鉴于来自大量加工任务的大量能耗数据,提出的算法正在基于Storm和Hadoop的框架上实现,旨在实现在线实时机器异常检测。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号