首页> 外文OA文献 >Polymer-stable magnesium nanocomposites prepared by laser ablation for efficient hydrogen storage
【2h】

Polymer-stable magnesium nanocomposites prepared by laser ablation for efficient hydrogen storage

机译:通过激光烧蚀制备的聚合物稳定的镁纳米复合材料,可有效储氢

摘要

Hydrogen is a promising alternative energy carrier that can potentially facilitate the transition from fossil fuels to sources of clean energy because of its prominent advantages such as high energy density (142 MJ kg−1), great variety of potential sources (for example water, biomass, organic matter), and low environmental impact (water is the sole combustion product). However, due to its light weight, the efficient storage of hydrogen is still an issue investigated intensely. Various solid media have been considered in that respect among which magnesium hydride stands out as a candidate offering distinct advantages.Recent theoretical work indicates that MgH2 becomes less thermodynamically stable as particle diameter decreases below 2 nm. Our DFT (density functional theory) modeling studies have shown that the smallest enthalpy change, corresponding to 2 unit-cell thickness (1.6 Å Mg/3.0Å MgH2) of the film, is 57.7 kJ/molMg. This enthalpy change is over 10 kJ/molMg smaller than that of the bulk. It is important to note that the range of enthalpy change for systems that are suitable for mobile storage applications is 15–24 kJ/molH at 298 K.The important key for the development of air-stable Mg-nanocrystals is the use of PMMA (polymethylmethacrylate) as an encapsulation agent. In our work we use laser ablation, a non-electrochemical method, for producing well-dispersed nanoparticles without the presence of any long-range aggregation. The observed improved hydrogenation characteristics of the polymer-stable Mg-nanoparticles are associated to the preparation procedure and in any case the polymer-laser ablation is a new approach for the production of air-protected and inexpensive Mg-nanoparticles.
机译:氢是一种有前途的替代能源载体,由于其突出的优势,例如高能量密度(142 MJ kg-1),多种潜在来源(例如水,生物质),可以潜在地促进从化石燃料向清洁能源的过渡,有机物)和低环境影响(水是唯一的燃烧产物)。然而,由于其重量轻,氢的有效存储仍然是一个受到广泛研究的问题。在这方面,已经考虑了各种固体介质,其中氢化镁是具有明显优势的候选者。近期的理论工作表明,当粒径减小到2 nm以下时,MgH2的热力学稳定性变差。我们的DFT(密度泛函理论)建模研究表明,最小的焓变(对应于薄膜的2个晶胞厚度(1.6ÅMg / 3.0ÅMgH2))为57.7 kJ / molMg。该焓变比本体的焓变小10 kJ / molMg以上。重要的是要注意,适用于移动存储应用的系统的焓变范围在298 K时为15–24 kJ / molH。开发空气稳定的Mg纳米晶体的重要关键是使用PMMA(聚甲基丙烯酸甲酯)作为封装剂。在我们的工作中,我们使用激光消融(一种非电化学方法)来生产分散良好的纳米粒子,而没有任何长距离聚集。观察到的聚合物稳定的Mg纳米颗粒改善的氢化特性与制备过程有关,在任何情况下,聚合物激光烧蚀是生产空气保护的廉价Mg纳米颗粒的新方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号