首页> 外文OA文献 >A prediction of cell differentiation and proliferation within a collagen-glycosaminoglycan scaffold subjected to mechanical strain and perfusive fluid flow.
【2h】

A prediction of cell differentiation and proliferation within a collagen-glycosaminoglycan scaffold subjected to mechanical strain and perfusive fluid flow.

机译:对经受机械应变和灌注液流动的胶原蛋白-糖胺聚糖支架内细胞分化和增殖的预测。

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Mesenchymal stem cell (MSC) differentiation can be influenced by biophysical stimuli imparted by the host scaffold. Yet, causal relationships linking scaffold strain magnitudes and inlet fluid velocities to specific cell responses are thus far underdeveloped. This investigation attempted to simulate cell responses in a collagen-glycosaminoglycan (CG) scaffold within a bioreactor. CG scaffold deformation was simulated using micro-computed tomography (CT) and an in-house finite element solver (FEEBE/linear). Similarly, the internal fluid velocities were simulated using the afore-mentioned microCT dataset with a computational fluid dynamics solver (ANSYS/CFX). From the ensuing cell-level mechanics, albeit octahedral shear strain or fluid velocity, the proliferation and differentiation of the representative cells were predicted from deterministic functions. Cell proliferation patterns concurred with previous experiments. MSC differentiation was dependent on the level of CG scaffold strain and the inlet fluid velocity. Furthermore, MSC differentiation patterns indicated that specific combinations of scaffold strains and inlet fluid flows cause phenotype assemblies dominated by single cell types. Further to typical laboratory procedures, this predictive methodology demonstrated loading-specific differentiation lineages and proliferation patterns. It is hoped these results will enhance in-vitro tissue engineering procedures by providing a platform from which the scaffold loading applications can be tailored to suit the desired tissue.
机译:间充质干细胞(MSC)的分化可能受到宿主支架赋予的生物物理刺激的影响。然而,将支架应变大小和入口流体速度与特定细胞反应联系起来的因果关系迄今尚未得到充分开发。这项研究试图模拟生物反应器中胶原蛋白-糖胺聚糖(CG)支架中的细胞反应。使用微计算机断层扫描(CT)和内部有限元求解器(FEEBE / linear)模拟CG支架变形。同样,内部流体速度是使用带有计算流体动力学求解器(ANSYS / CFX)的上述microCT数据集进行模拟的。从随后的细胞水平力学(尽管是八面体剪切应变或流体速度),可以从确定性函数预测代表性细胞的增殖和分化。细胞增殖模式与先前的实验一致。 MSC的分化取决于CG支架的应变水平和入口流体的速度。此外,MSC分化模式表明,支架菌株和入口流体流动的特定组合会导致表型组装以单细胞类型为主。除典型的实验室程序外,这种预测性方法还显示了负载特异性分化谱系和增殖模式。希望这些结果将通过提供一个平台来增强体外组织工程程序,从该平台可以调整支架装载应用以适合所需的组织。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号