首页> 外文OA文献 >Mapping Lorey's height over Hyrcanian forests of Iran using synergy of ICESat/GLAS and optical images
【2h】

Mapping Lorey's height over Hyrcanian forests of Iran using synergy of ICESat/GLAS and optical images

机译:利用ICESat / GLAS和光学图像的协同作用绘制Lorey在伊朗Hycancanian森林上的高度图

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Lorey's height, representative of mean height in uneven-aged forest stands, is a valuable parameter for forest ecosystem management. While in situ measures provide the most precise information, remote-sensing techniques may provide less expensive but denser and more operational alternative of Lorey's height estimation over highly mountainous areas. This research aims first to evaluate the performances of two nonparametric data mining methods, random forest (RF) and artificial neural network (ANN), for estimation of Lorey's height using ice, cloud and land elevation satellite/geoscience laser altimeter system (ICESat/GLAS) in Hyrcanian forests of Iran and then to provide Lorey's height map using a synergy of ICESat/GLAS and optical images (TM and SPOT). RF and ANN GLAS height models were developed using waveform deterministic metrics, principal components (PCs) from principal component analysis (PCA) and terrain index (TI) extracted from a digital elevation model (DEM). The best result was obtained using an ANN combining first three PCs of PCA and waveform extent ʺWextʺ (RMSE = 3.4 m, RMSE% = 12.4). In order to map Lorey's height, GLAS-estimated heights were regressed against indices derived from optical images and also topographic information. The best model (RF regression with RMSE = 5.5 m and = 0.59) was applied on the entire study area, and a wall-to-wall height map was generated. This map showed relatively good compatibility with in situ measurements collected in part of the study area. (Résumé d'auteur)
机译:Lorey的高度代表了不平均年龄林分的平均高度,是森林生态系统管理的重要参数。尽管就地测量可以提供最精确的信息,但是遥感技术可能会提供较高的费用,但洛伊(Lorey)在高山区的高度估计较便宜,但密度更大且操作性更高。这项研究的目的是首先评估两种非参数数据挖掘方法的性能,即随机森林(RF)和人工神经网络(ANN),以便使用冰,云和陆地海拔卫星/地球科学激光高度计系统(ICESat / GLAS)估算Lorey的身高),然后使用ICESat / GLAS和光学图像(TM和SPOT)的协同作用提供Lorey的高度图。使用波形确定性度量,主成分分析(PCA)的主成分(PC)和从数字高程模型(DEM)提取的地形指数(TI)开发了RF和ANN GLAS高度模型。使用ANN结合PCA的前三台PC和波形范围ʺWextʺ(RMSE = 3.4 m,RMSE%= 12.4)可获得最佳结果。为了绘制Lorey的高度,将GLAS估计的高度与光学图像和地形信息得出的指数进行了回归。最佳模型(RMSE = 5.5 m和= 0.59的RF回归)应用于整个研究区域,并生成了墙到墙的高度图。该图显示了与在研究区域的一部分中收集的原位测量值相对较好的兼容性。 (Résuméd'auteur)

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号