首页> 外文OA文献 >Deformation simulation of cells seeded on a collagen-GAG scaffold in a flow perfusion bioreactor using a sequential 3D CFD-elastostatics model.
【2h】

Deformation simulation of cells seeded on a collagen-GAG scaffold in a flow perfusion bioreactor using a sequential 3D CFD-elastostatics model.

机译:使用顺序3D CFD静电消除模型对流灌流生物反应器中胶原蛋白GAG支架上播种的细胞进行变形模拟。

摘要

Tissue-engineered bone shows promise in meeting the huge demand for bone grafts caused by up to 4 million bone replacement procedures per year, worldwide. State-of-the-art bone tissue engineering strategies use flow perfusion bioreactors to apply biophysical stimuli to cells seeded on scaffolds and to grow tissue suitable for implantation into the patientu27s body. The aim of this study was to quantify the deformation of cells seeded on a collagen-GAG scaffold which was perfused by culture medium inside a flow perfusion bioreactor. Using a microCT scan of an unseeded collagen-GAG scaffold, a sequential 3D CFD-deformation model was developed. The wall shear stress and the hydrostatic wall pressure acting on the cells were computed through the use of a CFD simulation and fed into a linear elastostatics model in order to calculate the deformation of the cells. The model used numerically seeded cells of two common morphologies where cells are either attached flatly on the scaffold wall or bridging two struts of the scaffold. Our study showed that the displacement of the cells is primarily determined by the cell morphology. Although cells of both attachment profiles were subjected to the same mechanical load, cells bridging two struts experienced a deformation up to 500 times higher than cells only attached to one strut. As the scaffoldu27s pore size determines both the mechanical load and the type of attachment, the design of an optimal scaffold must take into account the interplay of these two features and requires a design process that optimizes both parameters at the same time.
机译:组织工程化的骨头在满足每年全球多达四百万次骨置换手术所引起的对骨移植物的巨大需求方面显示出希望。最新的骨组织工程学策略使用血流灌注生物反应器将生物物理刺激物应用于接种在支架上的细胞,并生长适合植入患者体内的组织。这项研究的目的是量化接种在胶原GAG支架上的细胞的变形,该支架由流动灌注生物反应器内部的培养基灌注。使用未播种的胶原蛋白GAG支架的microCT扫描,开发了顺序3D CFD变形模型。通过使用CFD模拟计算作用在单元上的壁面剪应力和静水壁压力,并将其输入到线性弹性模型中,以计算单元的变形。该模型使用了两种常见形态的数​​字种子细胞,其中细胞要么平坦地附着在支架壁上,要么桥接支架的两个支柱。我们的研究表明,细胞的移位主要取决于细胞的形态。尽管两个附着轮廓的单元格承受相同的机械载荷,但桥接两个支柱的单元格的变形比仅附着于一个支柱的单元格变形高达500倍。由于支架的孔径决定了机械载荷和附着类型,因此最佳支架的设计必须考虑这两个特征的相互作用,并且需要同时优化两个参数的设计过程。

著录项

相似文献

  • 外文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号