首页> 外文OA文献 >Digital mapping of soil properties using multivariate statistical analysis and ASTER data in an Arid Region
【2h】

Digital mapping of soil properties using multivariate statistical analysis and ASTER data in an Arid Region

机译:利用多元统计分析和ASTER数据对干旱地区的土壤特性进行数字绘图

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Modeling and mapping of soil properties has been identified as key for effective land degradation management and mitigation. The ability to model and map soil properties at sufficient accuracy for a large agriculture area is demonstrated using Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) imagery. Soil samples were collected in the El-Tina Plain, Sinai, Egypt, concurrently with the acquisition of ASTER imagery, and measured for soil electrical conductivity (EC_e), clay content and soil organic matter (OM). An ASTER image covering the study area was preprocessed, and two predictive models, multivariate adaptive regression splines (MARS) and the partial least squares regression (PLSR), were constructed based on the ASTER spectra. For all three soil properties, the results of MARS models were better than those of the respective PLSR models, with cross-validation estimated R^2 of 0.85 and 0.80 for EC_e, 0.94 and 0.90 for clay content and 0.79 and 0.73 for OM. Independent validation of EC_e, clay content and OM maps with 32 soil samples showed the better performance of the MARS models, with R^2 = 0.81, 0.89 and 0.73, respectively, compared to R^2 = 0.78, 0.87 and 0.71 for the PLSR models. The results indicated that MARS is a more suitable and superior modeling technique than PLSR for the estimation and mapping of soil salinity (EC_e), clay content and OM. The method developed in this paper was found to be reliable and accurate for digital soil mapping in arid and semi-arid environments.
机译:土壤特性的建模和绘图已被确认为有效土地退化管理和缓解的关键。使用先进的星载热发射和反射辐射计(ASTER)图像证明了在大型农业区域中以足够的精度对土壤特性进行建模和绘图的能力。在采集ASTER图像的同时,在埃及西奈的El-Tina平原采集了土壤样品,并测量了土壤电导率(EC_e),粘土含量和土壤有机质(OM)。对覆盖研究区域的ASTER图像进行预处理,并基于ASTER光谱构建了两个预测模型,即多元自适应回归样条(MARS)和偏最小二乘回归(PLSR)。对于所有三种土壤特性,MARS模型的结果均优于各自的PLSR模型,交叉验证的EC_e的R ^ 2为0.85和0.80,粘土含量的为0.94和0.90,OM的为0.79和0.73。对32个土壤样品的EC_e,粘土含量和OM图的独立验证表明,MARS模型具有更好的性能,与PLSR的R ^ 2 = 0.78、0.87和0.71相比,R ^ 2 = 0.81、0.89和0.73楷模。结果表明,MARS是一种比PLSR更合适,更优越的建模技术,可用于估算土壤盐度(EC_e),粘土含量和OM。发现本文开发的方法对于干旱和半干旱环境中的数字土壤制图是可靠且准确的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号