首页> 外文OA文献 >A Generalized Multiscale Finite Element Method for poroelasticity problems II: nonlinear coupling
【2h】

A Generalized Multiscale Finite Element Method for poroelasticity problems II: nonlinear coupling

机译:多孔弹性问题的广义多尺度有限元方法II:非线性耦合

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In this paper, we consider the numerical solution of some nonlinear poroelasticity problems that are of Biot type and develop a general algorithm for solving nonlinear coupled systems. We discuss the difficulties associated with flow and mechanics in heterogenous media with nonlinear coupling. The central issue being how to handle the nonlinearities and the multiscale scale nature of the media. To compute an efficient numerical solution we develop and implement a Generalized Multiscale Finite Element Method (GMsFEM) that solves nonlinear problems on a coarse grid by constructing local multiscale basis functions and treating part of the nonlinearity locally as a parametric value. After linearization with a Picard Iteration, the procedure begins with construction of multiscale bases for both displacement and pressure in each coarse block by treating the staggered nonlinearity as a parametric value. Using a snapshot space and local spectral problems, we construct an offline basis of reduced dimension. From here an online, parametric dependent, space is constructed. Finally, after multiplying by a multiscale partitions of unity, the multiscale basis is constructed and the coarse grid problem then can be solved for arbitrary forcing and boundary conditions. We implement this algorithm on a geometry with a linear and nonlinear pressure dependent permeability field and compute error between the multiscale solution with the fine-scale solutions.
机译:在本文中,我们考虑了一些Biot型非线性多孔弹性问题的数值解,并开发了求解非线性耦合系统的通用算法。我们讨论了非线性耦合在非均质介质中与流动和力学有关的困难。中心问题是如何处理媒体的非线性和多尺度性质。为了计算有效的数值解,我们开发并实现了通用多尺度有限元方法(GMsFEM),该方法通过构造局部多尺度基函数并将局部非线性部分作为参数值来解决粗糙网格上的非线性问题。用Picard迭代线性化后,该过程开始于通过将交错的非线性作为参数值来构造每个粗块中位移和压力的多尺度基础。利用快照空间和局部光谱问题,我们构建了降维的离线基础。从此处构建一个在线的,与参数相关的空间。最后,在乘以一个单位的多尺度分区之后,便建立了多尺度基础,然后可以针对任意强迫和边界条件解决粗网格问题。我们在具有线性和非线性压力相关渗透率场的几何体上实现该算法,并计算多尺度解与精细尺度解之间的误差。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号