首页> 外文OA文献 >Scalable real-time parking lot classification: an evaluation of image features and supervised learning algorithms
【2h】

Scalable real-time parking lot classification: an evaluation of image features and supervised learning algorithms

机译:可扩展的实时停车场分类:图像特征评估和监督学习算法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The time-consuming search for parking lots could be assisted by efficient routing systems. Still, the needed vacancy detection is either very hardware expensive, lacks detail or does not scale well for industrial application. This paper presents a video-based system for cost-effective detection of vacant parking lots, and an extensive evaluation with respect to the system’s transferability to unseen environments. Therefore, different image features and learning algorithms were examined on three independent datasets for an unbiased validation. A feature / classifier combination which solved the given task against the background of a robustly scalable system, which does not require re-training on new parking areas, was found. In addition, the best feature provides high performance on gray value surveillance cameras. The final system reached an accuracy of 92.33% to 99.96%, depending on the parking rows’ distance, using DoG-features and a support vector machine.
机译:高效的选路系统可以协助耗时的停车场搜索。尽管如此,所需的空位检测还是非常昂贵的硬件,缺乏细节或不能很好地扩展到工业应用。本文提出了一种基于视频的系统,可以经济高效地检测出空置停车场,并就该系统向不可见环境的可转移性进行了广泛的评估。因此,在三个独立的数据集上检查了不同的图像特征和学习算法,以进行无偏验证。找到了一种功能/分类器组合,可以在健壮的可扩展系统的背景下解决给定的任务,该系统不需要在新的停车位上进行重新培训。此外,最佳功能还为灰度监控摄像机提供了高性能。最终系统使用DoG功能和支持向量机,达到了92.33%至99.96%的精度,具体取决于停车行的距离。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号