首页> 外文OA文献 >Porous metal–organic polyhedral frameworks with optimal molecular dynamics and pore geometry for methane storage
【2h】

Porous metal–organic polyhedral frameworks with optimal molecular dynamics and pore geometry for methane storage

机译:具有最佳分子动力学和孔隙几何形状的多孔金属-有机多面体构架,用于甲烷存储

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Natural gas (methane, CH4) is widely considered as a promising energy carrier for mobile applications. Maximising the storage capacity is the primary goal for the design of future storage media. Here we report the CH4 storage properties in a family of isostructural (3,24)-connected porous materials, MFM-112a, MFM-115a and MFM-132a with different linker backbone functionalisation. Both MFM-112a and MFM-115a show excellent CH4 uptakes of 236 and 256 cm3 (STP) cm–3 (v/v) at 80 bar and room temperature, respectively. Significantly, MFM-115a displays an exceptionally high deliverable CH4 capacity of 208 v/v between 5 and 80 bar at room temperature, making it among the best performing MOFs for methane storage. We also synthesized the partially deuterated versions of the above materials and applied solid-state 2H NMR spectroscopy to show that these three frameworks contain molecular rotors which exhibit motion in fast, medium and slow regimes, respectively. In situ neutron powder diffraction studies on the binding sites for CD4 within MFM-132a and MFM-115a reveal that the primary binding site is located within the small pocket enclosed by the [(Cu2)3(isophthalate)3] window and three anthracene/phenyl panels. The open Cu(II) sites are the secondary/tertiary adsorption sites in these structures. Thus, we obtained direct experimental evidence showing that a tight cavity can generate a stronger binding affinity to gas molecules than open metal sites. Thus, solid-state 2H NMR and neutron diffraction studies revealed that it is the combination of optimal molecular dynamics, pore geometry and size, and favourable binding sites that leads to the exceptional and different methane uptakes in these materials.
机译:天然气(甲烷,CH4)被广泛认为是移动应用中有希望的能源载体。最大化存储容​​量是未来存储介质设计的主要目标。在这里,我们报告了同构(3,24)连接的多孔材料MFM-112a,MFM-115a和MFM-132a系列中具有不同接头骨架功能化的CH4存储特性。 MFM-112a和MFM-115a在80 bar和室温下均显示出出色的CH4吸收量,分别为236和256 cm3(STP)cm-3(v / v)。值得注意的是,MFM-115a在室温下在5至80 bar之间显示208 v / v的CH4的超高可交付量,使其成为甲烷存储性能最佳的MOF之一。我们还合成了上述材料的部分氘代形式,并应用了固态2H NMR光谱法显示,这三个框架包含分子转子,分别在快速,中速和慢速状态下表现出运动。对MFM-132a和MFM-115a中CD4结合位点的原位中子粉末衍射研究表明,主要结合位点位于[(Cu2)3(间苯二甲酸)3]窗口和三个蒽/苯基板。开放的Cu(II)位点是这些结构中的二级/三级吸附位点。因此,我们获得了直接的实验证据,表明紧密的空腔比开放的金属位点对气体分子的结合亲和力更强。因此,固态2H NMR和中子衍射研究表明,正是最佳分子动力学,孔隙几何形状和尺寸以及良好的结合位点的组合,导致这些材料中甲烷的异常吸收量不同。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号