首页> 外文OA文献 >Using evolutionary algorithms for fitting high-dimensional models to neuronal data
【2h】

Using evolutionary algorithms for fitting high-dimensional models to neuronal data

机译:使用进化算法将高维模型拟合到神经元数据

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

n the study of neurosciences, and of complex biological systems in general, there is frequently a need to fit mathematical models with large numbers of parameters to highly complex datasets. Here we consider algorithms of two different classes, gradient following (GF) methods and evolutionary algorithms (EA) and examine their performance in fitting a 9-parameter model of a filter-based visual neuron to real data recorded from a sample of 107 neurons in macaque primary visual cortex (V1). Although the GF method converged very rapidly on a solution, it was highly susceptible to the effects of local minima in the error surface and produced relatively poor fits unless the initial estimates of the parameters were already very good. Conversely, although the EA required many more iterations of evaluating the model neuron’s response to a series of stimuli, it ultimately found better solutions in nearly all cases and its performance was independent of the starting parameters of the model. Thus, although the fitting process was lengthy in terms of processing time, the relative lack of human intervention in the evolutionary algorithm, and its ability ultimately to generate model fits that could be trusted as being close to optimal, made it far superior in this particular application than the gradient following methods. This is likely to be the case in many further complex systems, as are often found in neuroscience.
机译:在神经科学研究以及一般的复杂生物系统的研究中,经常需要将具有大量参数的数学模型拟合到高度复杂的数据集中。在这里,我们考虑两种不同类别的算法:梯度跟随(GF)方法和进化算法(EA),并检查它们在将基于过滤器的视觉神经元的9参数模型与从107个神经元样本中记录的真实数据进行拟合中的性能。猕猴初级视觉皮层(V1)。尽管GF方法在解决方案上收敛非常快,但除非参数的初始估计值非常好,否则它非常容易受误差表面局部极小值的影响,并且拟合度相对较差。相反,尽管EA需要评估模型神经元对一系列刺激的反应需要进行更多次迭代,但它最终在几乎所有情况下都找到了更好的解决方案,并且其性能与模型的初始参数无关。因此,尽管就处理时间而言,拟合过程很漫长,但进化算法中人为干预的相对缺乏,以及其最终生成可被认为接近最佳模型拟合的模型的能力,使其在这一方面表现得非常出色。比梯度以下方法应用。正如在神经科学中经常发现的那样,在许多其他复杂系统中可能就是这种情况。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号