首页> 外文OA文献 >A data mining tool for detecting and predicting abnormal behaviour of railway tunnels
【2h】

A data mining tool for detecting and predicting abnormal behaviour of railway tunnels

机译:用于检测和预测铁路隧道异常行为的数据挖掘工具

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The UK railway network is subjected to an electrification process that aims to electrify most of the network by 2020. This upgrade will improve the capacity, reliability and efficiency of the transportation system by providing cleaner, quicker and more comfortable trains. During this process, railway infrastructures, such as tunnels, require to be adapted in order to provide the necessary clearance for the overhead line equipment, and consequently, a rigorous real-time health monitoring programme is needed to assure safety of workforce. Large amounts of data are generated by the real-time monitoring system, and automated data mining tools are then required to process this data accurately and quickly. Particularly, if an unexpected behaviour of the tunnel is identified, decision makers need to know: i) activities at the worksite at the time of movement occurring; ii) the predicted behaviour of the tunnel in the next few hours.udIn this paper, we propose a data mining method which is able to automatically analyse the database of the real-time recorded displacements of the tunnel by detecting the unexpected tunnel behaviour. The proposed tool, first of all, relies on a step of data pre-processing, which is used to remove the measurement noise, followed by a feature definition and selection process, which aims to identify the unexpected critical behaviours of the tunnel. The most critical behaviours are then analysed by developing a change-point detection method, which detects precisely when the tunnel started to deviate from the predicted safe behaviour. Finally, an Artificial Neural Network (ANN) method is used to predict the future displacements of the tunnel by providing fast information to decision makers that can optimize the working schedule accordingly.
机译:英国铁路网络正在经历电气化过程,该过程旨在到2020年使大部分网络电气化。此升级将通过提供更清洁,更快和更舒适的火车来提高运输系统的容量,可靠性和效率。在此过程中,需要对铁路基础设施(例如隧道)进行改造,以便为架空线设备提供必要的间隙,因此,需要严格的实时健康监控程序以确保工作人员的安全。实时监控系统会生成大量数据,然后需要自动数据挖掘工具来准确,快速地处理这些数据。特别是,如果识别出隧道的意外行为,决策者需要知道:i)移动发生时在工作现场的活动; ii)隧道在接下来的几个小时内的预测行为。 ud本文中,我们提出了一种数据挖掘方法,该方法能够通过检测意外的隧道行为自动分析实时记录的隧道位移数据库。首先,建议的工具依赖于数据预处理步骤,该步骤用于消除测量噪声,然后进行特征定义和选择过程,以识别隧道的意外关键行为。然后,通过开发变更点检测方法来分析最关键的行为,该方法可以精确检测隧道何时开始偏离预测的安全行为。最后,通过向决策者提供快速信息,从而可以相应地优化工作进度,使用人工神经网络(ANN)方法来预测隧道的未来位移。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号