首页> 外文OA文献 >A self-adaptive multimeme memetic algorithm co-evolving utility scores to control genetic operators and their parameter settings
【2h】

A self-adaptive multimeme memetic algorithm co-evolving utility scores to control genetic operators and their parameter settings

机译:自适应多模因模因算法,可共同演化效用分数,以控制遗传算子及其参数设置

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Memetic algorithms are a class of well-studied metaheuristics which combine evolutionary algorithms and local search techniques. A meme represents contagious piece of information in an adaptive information sharing system. The canonical memetic algorithm uses a fixed meme, denoting a hill climbing operator, to improve each solution in a population during the evolutionary search process. Given global parameters and multiple parametrised operators, adaptation often becomes a crucial constituent in the design of MAs. In this study, a self-adaptive self-configuring steady-state multimeme memetic algorithm (SSMMA) variant is proposed. Along with the individuals (solutions), SSMMA co-evolves memes, encoding the utility score for each algorithmic component choice and relevant parameter setting option. An individual uses tournament selection to decide which operator and parameter setting to employ at a given step. The performance of the proposed algorithm is evaluated on six combinatorial optimisation problems from a cross-domain heuristic search benchmark. The results indicate the success of SSMMA when compared to the static Mas as well as widely used self-adaptive Multimeme Memetic Algorithm from the scientific literature.
机译:模因算法是一类经过充分研究的元启发式方法,它结合了进化算法和局部搜索技术。模因表示自适应信息共享系统中的传染性信息。规范的模因算法使用表示爬山算子的固定模因来改进进化搜索过程中种群中的每个解。给定全局参数和多个参数化运算符,适应通常成为MA设计中的关键组成部分。在这项研究中,提出了一种自适应自配置稳态多模因模因算法(SSMMA)变体。 SSMMA与个人(解决方案)一起进化模因,编码每个算法组件选择和相关参数设置选项的效用得分。个人使用锦标赛选择来决定在给定步骤中采用哪种操作员和参数设置。在跨域启发式搜索基准测试的六个组合优化问题上,对所提出算法的性能进行了评估。结果表明,与静态Mas以及从科学文献中广泛使用的自适应Multimeme Memetic算法相比,SSMMA的成功。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号