首页> 外文OA文献 >Rating crowdsourced annotations: evaluating contributions of variable quality and completeness
【2h】

Rating crowdsourced annotations: evaluating contributions of variable quality and completeness

机译:对众包注释进行评级:评估可变质量和完整性的贡献

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Crowdsourcing has become a popular means to acquire data about the Earth and its environment inexpensively, but the data-sets obtained are typically imperfect and of unknown quality. Two common imperfections with crowdsourced data are the contributions from cheats or spammers and missing cases. The effect of the latter two imperfections on a method to evaluate the accuracy of crowdsourced data via a latent class model was explored. Using simulated and real data-sets, it was shown that the method is able to derive useful information on the accuracy of crowdsourced data even when the degree of imperfection was very high. The practical potential of this ability to obtain accuracy information within the geospatial sciences and the realm of Digital Earth applications was indicated with reference to an evaluation of building damage maps produced by multiple bodies after the 2010 earthquake in Haiti. Critically, the method allowed data-sets to be ranked in approximately the correct order of accuracy and this could help ensure that the most appropriate data-sets are used.
机译:众包已成为一种廉价地获取有关地球及其环境的数据的流行手段,但获得的数据集通常是不完善的且质量未知。众包数据的两个常见缺陷是作弊或垃圾邮件发送者和遗失案件的贡献。探索了后两种缺陷对通过潜在类模型评估众包数据准确性的方法的影响。使用模拟的和真实的数据集,结果表明,即使不完善的程度很高,该方法也能够得出关于众包数据准确性的有用信息。参照对2010年海地地震后由多个机构制作的建筑物破坏图的评估,表明了在地理空间科学和数字地球应用领域中获取准确信息的能力的实际潜力。至关重要的是,该方法允许以近似正确的准确性顺序对数据集进行排名,这可以帮助确保使用最合适的数据集。

著录项

  • 作者

    Foody Giles M.;

  • 作者单位
  • 年度 2013
  • 总页数
  • 原文格式 PDF
  • 正文语种 en
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号