首页> 外文OA文献 >Automatic detection of protected health information from clinic narratives
【2h】

Automatic detection of protected health information from clinic narratives

机译:从临床叙述中自动检测受保护的健康信息

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

This paper presents a natural language processing (NLP) system that was designed to participate in the 2014 i2b2 de-identification challenge. The challenge task aims to identify and classify seven main Protected Health Information (PHI) categories and 25 associated sub categories. A hybrid model was proposed which combines machine learning techniques with keyword-based and rule based approaches to deal with the complexity inherent in PHI categories. Our proposed approaches exploit a rich set of linguistic features, both syntactic and word surface-oriented, which are further enriched by task specific features and regular expression template patterns to characterize the semantics of various PHI categories. Our system achieved promising accuracy on the challenge test data with an overall micro-averaged F measure of 93.6%, which was the winner of this de-identification challenge.
机译:本文提出了一种自然语言处理(NLP)系统,旨在参加2014 i2b2取消身份验证挑战。挑战任务旨在识别和分类七个主要的受保护健康信息(PHI)类别和25个相关的子类别。提出了一种混合模型,该模型将机器学习技术与基于关键字和基于规则的方法相结合,以解决PHI类别固有的复杂性。我们提出的方法利用了一套丰富的语言功能,包括面向语言和句法的语法功能,以及特定于任务的功能和正则表达式模板模式,进一步丰富了各种PHI类别的语义特征。我们的系统在挑战测试数据上实现了令人鼓舞的准确性,总体微平均F度量为93.6%,这是该取消标识挑战的获胜者。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号