首页> 外文OA文献 >Fame for Sale: Efficient Detection of Fake Twitter Followers
【2h】

Fame for Sale: Efficient Detection of Fake Twitter Followers

机译:待出售的名望:高效地检测虚假Twitter关注者

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Fake followers?are those Twitter accounts specifically created to inflate the number of followers of a target account. Fake followers are dangerous for the social platform and beyond, since they may alter concepts like popularity and influence in the Twittersphere - hence impacting on economy, politics, and society. In this paper, we contribute along different dimensions. First, we review some of the most relevant existing features and rules (proposed by Academia and Media) for anomalous Twitter accounts detection. Second, we create a baseline dataset of verified human and fake follower accounts. Such baseline dataset is publicly available to the scientific community. Then, we exploit the baseline dataset to train a set of machine-learning classifiers built over the reviewed rules and features. Our results show that most of the rules proposed by Media provide unsatisfactory performance in revealing fake followers, while features proposed in the past by Academia for spam detection provide good results. Building on the most promising features, we revise the classifiers both in terms of reduction of overfitting and cost for gathering the data needed to compute the features. The final result is a novel?Class A?classifier, general enough to thwart overfitting, lightweight thanks to the usage of the less costly features, and still able to correctly classify more than 95% of the accounts of the original training set. We ultimately perform an information fusion-based sensitivity analysis, to assess the global sensitivity of each of the features employed by the classifier. The findings reported in this paper, other than being supported by a thorough experimental methodology and interesting on their own, also pave the way for further investigation on the novel issue of fake Twitter followers.
机译:伪造的追随者是专门创建来增加目标帐户的追随者数量的那些Twitter帐户。虚假的追随者对于社交平台及其他社交平台而言是危险的,因为它们可能会改变Twitter圈中的知名度和影响力等概念,从而影响经济,政治和社会。在本文中,我们在不同方面做出了贡献。首先,我们回顾一些最相关的现有功能和规则(由Academia和Media提出),用于异常Twitter帐户检测。其次,我们创建一个经过验证的人工和虚假追踪者帐户的基准数据集。这样的基线数据集可公开提供给科学界。然后,我们利用基线数据集来训练一组基于已检查规则和功能的机器学习分类器。我们的结果表明,Media提出的大多数规则在揭示伪造的追随者方面表现不尽人意,而Academia过去为垃圾邮件检测提出的功能却提供了良好的结果。在最有前途的功能的基础上,我们在减少过度拟合和收集计算功能所需数据的成本方面修订了分类器。最终的结果是一种新颖的“ A类”分类器,其通用性足以抵制过度拟合,轻巧,这归功于使用了成本较低的功能,并且仍能够正确分类原始训练集的95%以上的帐户。我们最终进行基于信息融合的敏感性分析,以评估分类器使用的每个功能的整体敏感性。本文所报告的发现,除了得到彻底的实验方法的支持和本身有趣之外,还为进一步研究假Twitter追随者这一新颖问题铺平了道路。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号