首页> 外文OA文献 >Never-stop Learning: continuous validation of learned models for evolving systems through monitoring
【2h】

Never-stop Learning: continuous validation of learned models for evolving systems through monitoring

机译:永不停歇的学习:通过监控不断验证不断发展的系统的学习模型

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Interoperability among the multitude of heterogeneous and evolving networked systems made available as black boxes remains a tough challenge. Learning technology is increasingly employed to extract behavioural models that form the basis for systems of systems integration. However, as networked systems evolve, their learned models need to evolve as well. This can be achieved by collecting actual interactions via monitoring and using these observations to continuously refine the learned behavioural models and, in turn, the overall system. This approach is part of the overall CONNECT approach.
机译:随着黑匣子的出现,众多异构和不断发展的网络系统之间的互操作性仍然是一个艰巨的挑战。学习技术越来越多地用于提取行为模型,这些行为模型构成了系统集成系统的基础。但是,随着网络系统的发展,其学习的模型也需要发展。这可以通过监视收集实际的交互作用,并使用这些观察来不断完善所学习的行为模型,进而完善整个系统来实现。此方法是整个CONNECT方法的一部分。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号