首页> 外文OA文献 >Evapotranspiration retrievals from a mesoscale model based weather variables for soil moisture deficit estimation
【2h】

Evapotranspiration retrievals from a mesoscale model based weather variables for soil moisture deficit estimation

机译:基于中尺度模型的天气变量的蒸散量反演,用于估算土壤水分亏缺

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Reference Evapotranspiration (ETo) and soil moisture deficit (SMD) are vital forunderstanding the hydrological processes, particularly in the context of sustainable water use efficiency in the globe. Precise estimation of ETo and SMD are required for developing appropriate forecasting systems, in hydrological modeling and also in precision agriculture. In this study, the surface temperature downscaled from Weather Research and Forecasting (WRF) model is used toestimate ETo using the boundary conditions that are provided by the European Center for Medium Range Weather Forecast (ECMWF). In order to understand the performance, the Hamon’s method is employed to estimate the ETo using the temperature from meteorological station and WRF derived variables. After estimating the ETo, a range of linear and non-linear models is utilized toretrieve SMD. The performance statistics such as RMSE, %Bias, and Nash Sutcliffe Efficiency (NSE) indicates that the exponential model (RMSE = 0.226; %Bias = −0.077; NSE = 0.616) is efficient for SMD estimation by using the Observed ETo in comparison to the other linear and non-linear models (RMSE range = 0.019–0.667; %Bias range = 2.821–6.894; NSE = 0.013–0.419) used in this study. On the other hand, in case of SMD estimated using WRF downscaled meteorologicalvariables based ETo, the linear model is found promising (RMSE = 0.017; %Bias = 5.280; NSE = 0.448) as compared to the non-linear models (RMSE range = 0.022–0.707; %Bias range = −0.207– −6.088; NSE range = 0.013–0.149). Findings of this study also showed that all the models are performing better during the growing season (RMSE range = 0.024–0.025; %Bias range = −4.982–−3.431; r = 0.245–0.281) than the non−growing season (RMSE range = 0.011–0.12; %Bias range = 33.073–32.701; r = 0.161–0.244) for SMD estimation.
机译:参考蒸散量(ETo)和土壤水分亏缺(SMD)对于了解水文过程至关重要,尤其是在全球可持续用水效率的背景下。为了开发适当的预报系统,水文模型以及精密农业,需要精确估算ETo和SMD。在这项研究中,使用了由天气研究和预报(WRF)模型缩减的地表温度,使用欧洲中程天气预报中心(ECMWF)提供的边界条件来估算ETo。为了了解性能,采用了Hamon方法,利用气象站的温度和WRF得出的变量来估算ETo。在估计了ETo之后,利用一系列线性和非线性模型来检索SMD。性能统计数据(例如RMSE,%Bias和Nash Sutcliffe效率(NSE))表明,与使用观察到的ETo相比,指数模型(RMSE = 0.226;%Bias = -0.077; NSE = 0.616)对于SMD估计是有效的。本研究中使用的其他线性和非线性模型(RMSE范围= 0.019–0.667; Bias范围= 2.821–6.894; NSE = 0.013–0.419)。另一方面,如果使用基于WRF的按比例缩小的气象变量的ETo来估算SMD,则与非线性模型(RMSE范围= 0.022)相比,线性模型被认为很有希望(RMSE = 0.017;%Bias = 5.280; NSE = 0.448)。 –0.707;%偏差范围= -0.207– −6.088; NSE范围= 0.013–0.149)。这项研究的结果还表明,所有模型在生长季节(RMSE范围= 0.024–0.025;%偏差范围= −4.982–−3.431; r ​​= 0.245–0.281)均比非生长季节(RMSE范围)更好。 = SMD估算的0.011-0.12;偏差范围= 33.073-32.701; r = 0.161-0.244)。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号