首页> 外文OA文献 >Frequent Episode Mining to support Pattern Analysis in Developmental Biology
【2h】

Frequent Episode Mining to support Pattern Analysis in Developmental Biology

机译:频繁情节挖掘以支持发育生物学的模式分析

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

We introduce a new method for the analysis of heterochrony in developmental biology. Our method is based on methods used in data mining and intelligent data analysis and applied in, e.g., shopping basket analysis, alarm network analysis and click stream analysis. We have transferred, so called, frequent episode mining to operate in the analysis of developmental timing of different (model) species. This is accomplished by extracting small temporal patterns, i.e. episodes, and subsequently comparing the species based on extracted patterns. The method allows relating the development of different species based on different types of data. In examples we show that the method can reconstruct a phylogenetic tree based on gene-expression data as well as using strict morphological characters. The method can deal with incomplete and/or missing data. Moreover, the method is flexible and not restricted to one particular type of data: i.e., our method allows comparison of species and genes as well as morphological characters based on developmental patterns by simply transposing the dataset accordingly. We illustrate a range of applications.
机译:我们介绍了一种分析发育生物学异时性的新方法。我们的方法基于用于数据挖掘和智能数据分析的方法,并应用于例如购物篮分析,警报网络分析和点击流分析。我们已经转移了所谓的频繁情节挖掘,以分析不同(模型)物种的发育时机。这是通过提取较小的时间模式(即情节),然后根据提取的模式比较物种来实现的。该方法允许基于不同类型的数据来关联不同物种的发育。在示例中,我们证明了该方法可以基于基因表达数据以及使用严格的形态特征来重建系统树。该方法可以处理不完整和/或丢失的数据。而且,该方法是灵活的并且不限于一种特定类型的数据:即,我们的方法允许通过简单地相应地转置数据集而基于发育模式比较物种和基因以及形态特征。我们说明了一系列应用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号