首页> 外文OA文献 >Ground-Motion Prediction Models for Arias Intensity and Cumulative Absolute Velocity for Japanese Earthquakes Considering Single-Station Sigma and Within-Event Spatial Correlation
【2h】

Ground-Motion Prediction Models for Arias Intensity and Cumulative Absolute Velocity for Japanese Earthquakes Considering Single-Station Sigma and Within-Event Spatial Correlation

机译:考虑单站西格玛和事件内空间相关性的日本地震咏叹调强度和累积绝对速度的地面运动预测模型

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Arias intensity (AI) and cumulative absolute velocity (CAV) are ground-motion measures that have been found to be well-suited to application in a number of problems in earthquake engineering. Both measures reflect multiple characteristics of the ground motion (e.g. amplitude and duration), despite being scalar measures. In this study, new ground-motion prediction models for the average horizontal component of AI and CAV are developed, using an extended database of strong-motion records from Japan, including the 2011 Tohoku event. The models are valid for magnitude greater than 5.0, rupture distance less than 300 km, and focal depth less than 150 km. The models are novel as they take account of ground-motion data from the 2011 Tohoku earthquake whilst incorporating other important features, such as event type and regional anelastic attenuation. The residuals from the ground-motion modeling are analyzed in detail to gain further insights into the uncertainties related to the developed median prediction equations for AI and CAV. The site-to-site standard deviations are computed and spatial correlation analysis is carried out for AI and CAV, considering both within-event residuals and within-event single-site residuals for individual events as well as for the combined dataset.
机译:咏叹调强度(AI)和累积绝对速度(CAV)是地面运动量度,已被发现非常适用于地震工程中的许多问题。尽管是标量度量,但这两个度量都反映了地面运动的多个特征(例如,幅度和持续时间)。在这项研究中,使用包括2011年东北事件在内的日本强大运动记录的扩展数据库,开发了AI和CAV平均水平分量的新地面运动预测模型。这些模型对于大于5.0的震级,小于300 km的破裂距离和小于150 km的焦深有效。这些模型很新颖,因为它们考虑到了2011年东北地震的地面运动数据,同时又结合了其他重要特征,例如事件类型和区域非弹性衰减。详细分析了地面运动模型中的残差,以进一步了解与开发的AI和CAV中值预测方程有关的不确定性。考虑到单个事件以及组合数据集的事件内残差和事件内单点残差,计算了AI与CAV的站点间标准差,并进行了空间相关性分析。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号