首页> 外文OA文献 >Adaptive Observer-based parameter estimation with application to Road Gradient and Vehicle Mass Estimation
【2h】

Adaptive Observer-based parameter estimation with application to Road Gradient and Vehicle Mass Estimation

机译:基于自适应观测器的参数估计及其在道路坡度和车辆质量估计中的应用

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

A novel observer-based parameter estimation scheme with sliding mode term has been developed to estimate the road gradient and the vehicle weight using only the vehicle's velocity and the driving torque. The estimation algorithm exploits all known terms in the system dynamics and a low pass filtered representation of the dynamics to derive an explicit expression of the parameter estimation error without measuring the acceleration. The proposed parameter estimation scheme which features a sliding-mode term to ensure the fast and robust convergence of the estimation in the presence of persistent excitation is augmented to an adaptive observer and analyzed using Lyapunov Theory. The analytical results show that the algorithm is stable and ensures finite-time error convergence to a bounded error even in the presence of disturbances. In the absence of disturbances, convergence to the true values in finite time is guaranteed. A simple practical method for validating persistent excitation is provided using the new theoretical approach to estimation. This is validated by the practical implementation of the algorithm on a small-scaled vehicle, emulating a car system. The slope gradient as well as the vehicle's mass/weight are estimated online. The algorithm shows a significant improvement over previous results.
机译:已经开发出一种具有滑模项的新颖的基于观察者的参数估计方案,以仅使用车辆的速度和驱动扭矩来估计道路坡度和车辆重量。估计算法利用系统动力学中的所有已知项以及动力学的低通滤波表示来得出参数估计误差的显式表达式,而无需测量加速度。所提出的参数估计方案以滑模项为特征,以确保在存在持续激励的情况下快速且鲁棒地收敛估计,并将其增强为自适应观测器,并使用李雅普诺夫理论进行了分析。分析结果表明,该算法是稳定的,即使在存在干扰的情况下,也能确保有限时误差收敛到有界误差。在没有干扰的情况下,可以保证在有限时间内收敛到真实值。使用新的理论估算方法,提供了一种用于验证持久激励的简单实用方法。这可以通过在小型汽车上模拟汽车系统的算法的实际实现来验证。在线估算坡度和车辆的质量/重量。该算法显示出对先前结果的显着改进。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号