首页> 外文OA文献 >Processing the image gradient field using a topographic primal sketch approach
【2h】

Processing the image gradient field using a topographic primal sketch approach

机译:使用地形原始草图方法处理图像梯度场

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The spatial derivatives of the image intensity provide topographic information that may be used to identify and segment objects. The accurate computation of the derivatives is often hampered in medical images by the presence of noise and a limited resolution. This paper focuses on accurate computation of spatial derivatives and their subsequent use to process an image gradient field directly, from which an image with improved characteristics can be reconstructed. The improvements include noise reduction, contrast enhancement, thinning object contours and the preservation of edges.Processing the gradient field directly instead of the image is shown to have numerous benefits. The approach is developed such that the steps are modular, allowing the overall method to be improved and possibly tailored to different applications. As presented, the approach relies on a topographic representation and primal sketch of an image.Comparisons with existing image processing methods on a synthetic image and different medical images show improved results and accuracy in segmentation. Here the focus is on objects with low spatial resolution, which is often the case in medical images. The methods developed show the importance of improved accuracy in derivative calculation, and the potential in processing the image gradient field directly.
机译:图像强度的空间导数提供了可用于识别和分割对象的地形信息。在医学图像中,由于存在噪声和分辨率有限,导数的精确计算常常受到阻碍。本文着重于对空间导数的精确计算及其在随后直接用于处理图像梯度场的应用,从中可以重建具有改进特性的图像。这些改进包括降噪,对比度增强,对象轮廓变薄和边缘保留。直接处理梯度场而不是图像显示出许多好处。开发该方法使得步骤是模块化的,从而可以改进整个方法,并可能针对不同的应用进行定制。如前所述,该方法依赖于图像的地形表示和原始草图。与现有图像处理方法在合成图像和不同医学图像上的比较显示出改进的结果和分割精度。这里的重点是空间分辨率较低的对象,这在医学图像中通常是这种情况。所开发的方法显示出提高导数计算精度的重要性,以及直接处理图像梯度场的潜力。

著录项

  • 作者

    Gambaruto Alberto M;

  • 作者单位
  • 年度 2015
  • 总页数
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号