首页> 外文OA文献 >A novel hybrid Neumann expansion method for stochastic analysis of mistuned bladed discs
【2h】

A novel hybrid Neumann expansion method for stochastic analysis of mistuned bladed discs

机译:一种新的混合Neumann展开方法,用于迷糊式叶片盘的随机分析

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The paper presents a novel hybrid method to enhance the computational efficiency of matrix inversions during the stochastic analysis of mistuned bladed disc systems. The method is based on the use of stochastic Neumann expansion in the frequency domain, coupled with a matrix factorization in the neighbourhood of the resonant frequencies. The number of the expansion terms is used as an indicator to select the matrix inversion technique to be used, without introducing any additional computational cost. The proposed method is validated using two case studies, where the dynamics an aero-engine bladed disc is modelled first using a lumped parameter approach and then with high-fidelity finite element analysis. The frequency responses of the blades are evaluated according to different mistuning patterns via stiffness or mass perturbations under the excitation provided by the engine orders. Results from standard matrix factorization methods are used to benchmark the responses obtained from the proposed hybrid method. Unlike classic Neumann expansion methods, the new technique can effectively update the inversion of an uncertain matrix with no convergence problems during Monte Carlo simulations. The novel hybrid method is more computationally efficient than standard techniques, with no accuracy loss.
机译:本文提出了一种新的混合方法,可以提高对误叶片式圆盘系统进行随机分析时矩阵求逆的计算效率。该方法基于在频域中使用随机Neumann展开,并在谐振频率附近使用矩阵分解。扩展项的数量用作选择要使用的矩阵求逆技术的指标,而不会引入任何额外的计算成本。所提出的方法通过两个案例研究得到了验证,其中首先使用集总参数方法对航空发动机叶片盘的动力学建模,然后再使用高保真有限元分析。在发动机指令提供的激励下,根据刚度或质量扰动,根据不同的失谐模式评估叶片的频率响应。来自标准矩阵分解方法的结果用于对从所提出的混合方法获得的响应进行基准测试。与经典的Neumann展开方法不同,新技术可以有效地更新不确定矩阵的求逆,而在蒙特卡洛模拟过程中不会出现收敛问题。新颖的混合方法比标准技术具有更高的计算效率,并且没有精度损失。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号