In this study, we incorporate automatically obtained system/user performance features into machine learning experiments to detect student emotion in computer tutoring dialogs. Our results show a relative improvement of 2.7% on classification accuracy and 8.08% on Kappa over using standard lexical, prosodie, sequential, and identification features. This level of improvement is comparable to the performance improvement shown in previous studies by applying dialog acts or lexical/prosodic-/discourse- level contextual features.
展开▼