首页> 外文OA文献 >Coupled Transport/Hyperelastic Model for High Energy Density Nastic Materials
【2h】

Coupled Transport/Hyperelastic Model for High Energy Density Nastic Materials

机译:高能密度纳米材料的输运/超弹性耦合模型

摘要

A new development in aerospace technology involves the creation of aircraft that can undergo large changes in the shape of their wings and control surfaces. This technology, called morphing aircraft, does away with several performance compromises by allowing the aircraft to adapt to a wide variety of speed and altitude conditions. One of the challenges associated with the development of morphing aircraft is the creation of a skin that can allow for the in-plane stretching necessary for morphing but possess enough out-of-plane flexural rigidity to handle aerodynamic forces.A new class of high energy density active materials based upon biological processes is being developed to address this problem. These materials utilize the controlled transport of charge and fluid into micron-scale inclusions. The inclusions are phase separated from the surrounding matrix by a selectively-permeable membrane. Selective stimulation of the membrane enables bulk deformation in a process referred to in the plant kingdom as nastic movements. The particular material considered in this work utilizes biological transport mechanisms to generate an osmotic gradient across the membrane.The purpose of this work is to develop a physics-based computational model of the nastic material that couples ion and solvent fluxes generated by the biological transporters to a finite element analysis of the surrounding matrix. This model is to act as a feedback loop for material synthesis efforts. The processes occurring in the biotransport system are complex and highly coupled to one another. The numerical solution of the resulting transport model and its coupling with the finite element analysis are key challenges in creating a viable model. The resulting model has been compared to experiment and is capable of predicting material response over a wide range of configurations and transport components. A series of parametric studies is performed to determine the relative importance of the material parameters and provide guidance to experimental efforts.
机译:航空航天技术的新发展涉及飞机的制造,这种飞机的机翼和操纵面形状可能会发生巨大变化。这项称为变形飞机的技术通过使飞机适应多种速度和高度条件,从而消除了一些性能折衷的问题。与变形飞机的发展相关的挑战之一是创建一种蒙皮,该蒙皮可以允许变形所需的平面内拉伸,但具有足够的平面外抗弯刚度以处理空气动力。为了解决这个问题,正在开发基于生物过程的高密度活性材料。这些材料利用电荷和流体的受控传输进入微米级夹杂物。夹杂物通过选择性渗透的膜与周围的基质相分离。膜的选择性刺激使得在植物界称为鼻运动的过程中能够大量变形。这项工作中考虑的特定材料利用生物传输机制在整个膜上产生渗透梯度。这项工作的目的是开发一种基于物理学的鼻材料计算模型,该模型将生物传输器产生的离子和溶剂通量耦合到周围矩阵的有限元分析。该模型将充当材料合成工作的反馈回路。生物转运系统中发生的过程很复杂,并且彼此高度耦合。最终运输模型的数值解及其与有限元分析的耦合是创建可行模型的关键挑战。所得的模型已与实验进行了比较,并且能够预测各种配置和运输组件的材料响应。进行了一系列参数研究,以确定材料参数的相对重要性并为实验工作提供指导。

著录项

  • 作者

    Homison Christopher Joseph;

  • 作者单位
  • 年度 2006
  • 总页数
  • 原文格式 PDF
  • 正文语种 en
  • 中图分类
  • 入库时间 2022-08-31 15:10:47

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号