首页> 外文OA文献 >Analysis of feedback mechanisms with unknown delay using sparse multivariate autoregressive method
【2h】

Analysis of feedback mechanisms with unknown delay using sparse multivariate autoregressive method

机译:稀疏多元自回归方法分析未知延迟的反馈机制

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

© 2015 Ip et al.This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. This paper discusses the study of two interacting processes in which a feedback mechanism exists between the processes. The study was motivated by problems such as the circadian oscillation of gene expression where two interacting protein transcriptions form both negative and positive feedback loops with long delays to equilibrium. Traditionally, data of this type could be examined using autoregressive analysis. However, in circadian oscillation the order of an autoregressive model cannot be determined a priori. We propose a sparse multivariate autoregressive method that incorporates mixed linear effects into regression analysis, and uses a forward-backward greedy search algorithm to select nonzero entries in the regression coefficients, the number of which is constrained not to exceed a pre-specified number. A small simulation study provides preliminary evidence of the validity of the method. Besides the circadian oscillation example, an additional example of blood pressure variations using data from an intervention study is used to illustrate the method and the interpretation of the results obtained from the sparse matrix method. These applications demonstrate how sparse representation can be used for handling high dimensional variables that feature dynamic, reciprocal relationships.
机译:©2015 Ip等,这是根据知识共享署名许可协议的条款分发的开放获取文章,允许原始作者和出处被认可的情况下以任何方式不受限制地使用,分发和复制。本文讨论了两个相互作用过程的研究,其中两个过程之间存在反馈机制。这项研究受到诸如基因表达的昼夜节律振荡等问题的推动,其中两个相互作用的蛋白质转录形成负反馈和正反馈回路,并长时间延迟平衡。传统上,可以使用自回归分析来检查此类数据。但是,在昼夜节律振荡中,不能先验确定自回归模型的顺序。我们提出了一种稀疏的多元自回归方法,该方法将混合线性效应纳入回归分析,并使用前向后贪婪搜索算法在回归系数中选择非零条目,其数量被限制为不超过预先指定的数量。小型仿真研究提供了该方法有效性的初步证据。除了昼夜节律振荡示例外,还使用来自干预研究数据的血压变化示例来说明该方法以及对稀疏矩阵方法获得的结果的解释。这些应用程序演示了稀疏表示可如何用于处理具有动态,相互关系的高维变量。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号