首页> 外文OA文献 >SINGLE-CELL ELECTROPORATION USING ELECTROLYTE-FILLED CAPILLARIES -EXPERIMENTAL AND MODELING INVESTIGATIONS
【2h】

SINGLE-CELL ELECTROPORATION USING ELECTROLYTE-FILLED CAPILLARIES -EXPERIMENTAL AND MODELING INVESTIGATIONS

机译:使用电解质填充的毛细管进行单细胞电穿孔-实验和模型研究

摘要

Electrolyte-filled capillaries (EFCs) with fine tips provide a highly concentrated electric field for local single-cell electroporation (SCEP) with high spatial resolution. A complete circuit for SCEP experiments was built that consisted of a test circuit and an electroporation circuit, with the ability to monitor electrically the electroporation pulses. SCEP itself was monitored in real time by observing the loss of a fluorescent adduct of glutathione (Thioglo-1-GSH) from the intracellular space. SCEP can be applied for transfection of individual adherent cells. We hypothesize that transfection of single cells can be accomplished with the plasmid contained in a single capillary. During SCEP, electroosmotic flow can pump electrolyte out of the capillary enhancing plasmid transfer into cells. This was confirmed from both simulation and transfection experiments. Cells were successfully transfected with EGFP-C2 plasmid when the loss of Thioglo-1-GSH upon SCEP (ΔF) is larger than 10% and its mass transfer rate (M) through the membrane exceeds 0.03 s-1. A series of SCEP experiments has been carried out on PC-3 cells (with 2-µm tip opening) and A549 cells (with 4~5-µm tip opening) to investigate how the parameters such as cell-to-tip distance (dc), cell size (dm) and shape, temperature, current, and the cell cycle affect SCEP outcomes (M and resealing rate α) via statistical analysis. A good linear regression is achieved only at a low temperature of 15℃. The main factors affecting small molecule transport across cell membrane are dc, dm and electric current. A range of M (0.03 s-1 ~ 0.4 s-1 for PC-3 cells, or 0.03 s-1 ~ 0.5 s-1 for A549 cells) gives the best linear regressions. M is also affected by the cell cycle of A549 cells, and correlated with cell roundness only for PC-3 cells. Cells reseal faster at higher temperature; while lower temperature provides better survivability with identical ΔF. Lastly, numerical models were elaborated as a platform for better understanding of the SCEP process and prediction of the trends of SCEP under various experimental conditions. A mass transport model involving potential distribution, diffusion, convection and electrokinetic flow was extended to study mass transport at a buffer-filled pipette tip/porous medium interface.
机译:带有尖端的电解质填充毛细管(EFC)为具有高空间分辨率的局部单细胞电穿孔(SCEP)提供了高度集中的电场。建立了一个完整的SCEP实验电路,该电路包括一个测试电路和一个电穿孔电路,能够对电穿孔脉冲进行电监测。通过观察细胞内空间谷胱甘肽(Thioglo-1-GSH)荧光加合物的损失来实时监测SCEP本身。 SCEP可用于单个贴壁细胞的转染。我们假设可以用单个毛细管中包含的质粒完成单个细胞的转染。在SCEP期间,电渗流可以将电解质泵出毛细管,从而增强质粒转移到细胞中的能力。模拟和转染实验均证实了这一点。当SCEP上Thioglo-1-GSH的损失(ΔF)大于10%,并且其通过膜的传质速率(M)超过0.03 s-1时,将细胞成功转染EGFP-C2质粒。已经对PC-3电池(尖端开口2 µm)和A549电池(尖端开口4​​〜5 µm)进行了一系列SCEP实验,以研究诸如电池到尖端的距离(直流)等参数),细胞大小(dm),形状,温度,电流和细胞周期会通过统计分析影响SCEP结果(M和重新密封率α)。仅在15℃的低温下才能实现良好的线性回归。影响小分子跨细胞膜运输的主要因素是dc,dm和电流。 M的范围(对于PC-3细胞为0.03 s-1〜0.4 s-1,对于A549细胞为0.03 s-1〜0.5 s-1)可提供最佳线性回归。 M也受A549细胞的细胞周期影响,并且仅与PC-3细胞的细胞圆度相关。细胞在较高温度下重新密封更快;较低的温度以相同的ΔF提供更好的生存能力。最后,阐述了数值模型,作为更好地了解SCEP过程和预测各种实验条件下SCEP趋势的平台。扩展了涉及电位分布,扩散,对流和电动流动的质量传递模型,以研究在充满缓冲液的移液器吸头/多孔介质界面处的质量传递。

著录项

  • 作者

    Wang Manyan;

  • 作者单位
  • 年度 2012
  • 总页数
  • 原文格式 PDF
  • 正文语种 en
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号