首页> 外文OA文献 >Fundamental Study of Engineered Nanocrystalline and Amorphous Silicon Based High Capacity, Reversible and Stable Anodes for Lithium-Ion Batteries
【2h】

Fundamental Study of Engineered Nanocrystalline and Amorphous Silicon Based High Capacity, Reversible and Stable Anodes for Lithium-Ion Batteries

机译:工程纳米晶和非晶硅基高容量,可逆和稳定阳极的锂离子电池基础研究

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Commercial lithium-ion battery (LIB) systems at present employ graphite as the anode having a theoretical capacity of 372 mAh/g. However, for hybrid electric vehicles and electrical grid energy storage, batteries with much higher capacity and cycle life are needed. There is hence a critical need to explore alternative higher capacity alternative systems. Silicon, with a theoretical capacity of 4200 mAh/g is widely considered a promising alternative candidate anode to graphite. However, Si undergoes colossal volume expansion (>300%) during lithium alloying and de-alloying. This leads to pulverization resulting in loss of electrical contact of Si with the current collector thereby causing rapid decrease in capacity and consequent failure. It has been demonstrated that nanostructured (nc-Si) and amorphous (a-Si) forms of Si and Si based nanocomposites provide mechanical integrity preventing pulverization due to the reduced number density of atoms within a nano-sized grain and the ‘free volume’ effects in amorphous Si resulting in better capacity retention and cycle life. udIn this dissertation, the following simple and cost effective approaches for generating nanostructured composites of silicon are discussed: (1) Si nanoparticles of high specific surface area by high energy mechanical milling (HEMM), (2) Amorphous silicon (a-Si) films by electrodeposition, (3) Heterostructures of vertically aligned carbon nanotubes (VACNTs) and Si by chemical vapor deposition (CVD), and (4) low cost template based high throughput synthesis of hollow silicon nanotubes (h-SiNTs). ududAll of the above amorphous and nanocrystalline Si based composites were thoroughly investigated using material and electrochemical characterizations and accordingly, a structure-property relationship was established. Among the aforementioned structures, the electrodeposited a-Si films exhibited excellent cyclability (0.016% loss per cycle), while CNT/Si heterostructures showed a very low first cycle irreversible loss of only 10%. The hollow silicon nanotubes exhibited a reasonable first cycle irreversible loss (25%) but exhibited extraordinary cycling stability with a low capacity fade rate of ~0.06%loss/cycle at the end of 400 cycles. These amorphous and nanocrystalline based silicon anodes prepared by cost effective methods, due to their superior electrochemical properties, show considerable potential to replace the current graphite based anodes for the next generation of high energy density Li-ion batteries.ud
机译:目前,商用锂离子电池(LIB)系统采用石墨作为阳极,理论容量为372 mAh / g。然而,对于混合动力电动车辆和电网能量存储,需要具有更高容量和循环寿命的电池。因此,迫切需要探索替代的更高容量的替代系统。理论容量为4200 mAh / g的硅被广泛认为是石墨的有希望替代阳极。然而,在锂合金化和脱合金过程中,Si经历了巨大的体积膨胀(> 300%)。这导致粉碎,导致Si与集电器的电接触的损失,从而导致容量的迅速降低和随之而来的故障。已经证明,由于纳米尺寸晶粒内原子数密度的降低和“自由体积”,Si和Si基纳米复合材料的纳米结构(nc-Si)和非晶态(a-Si)形式可提供防止粉化的机械完整性。非晶硅中的硅酸效应导致更好的容量保持性和循环寿命。 ud在本文中,讨论了以下简单且经济高效的方法来生成硅的纳米结构复合材料:(1)通过高能机械研磨(HEMM)获得高比表面积的Si纳米颗粒,(2)非晶硅(a-Si) (3)通过化学气相沉积(CVD)垂直排列的碳纳米管(VACNTs)和硅的异质结构,以及(4)基于低成本模板的中空硅纳米管(h-SiNTs)高通量合成。 ud ud使用材料和电化学特性对上述所有非晶和纳米晶硅基复合材料进行了彻底研究,因此建立了结构-特性关系。在上述结构中,电沉积的a-Si膜表现出出色的可循环性(每个循环0.016%的损失),而CNT / Si异质结构显示出非常低的第一循环不可逆损失,仅为10%。中空硅纳米管表现出合理的第一个循环不可逆损耗(25%),但表现出非凡的循环稳定性,在400个循环结束时具有约0.06%的损耗/循环的低容量衰减率。通过成本有效的方法制备的这些基于非晶和纳米晶体的硅阳极,由于其优异的电化学性能,显示出巨大的潜力,可替代当前的石墨基阳极,用于下一代高能量密度锂离子电池。

著录项

  • 作者

    Epur Rigved;

  • 作者单位
  • 年度 2015
  • 总页数
  • 原文格式 PDF
  • 正文语种 en
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号