首页> 外文OA文献 >Latent variable models for longitudinal study with informative missingness
【2h】

Latent variable models for longitudinal study with informative missingness

机译:具有信息缺失的纵向研究潜变量模型

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Missing problem is very common in today's public health studies because of responses measured longitudinally. In this dissertation we proposed two latent variable models for longitudinal data with informative missingness. In the first approach, a latent variable model is developed for the categorical data, dividing the observed data into two latent classes: a 'regular' class and a 'special' class. Outcomes belonging to the regular class can be modeled using logistc regression and the outcomes in the special class have pre-deterministic values. Under the important assumption of conditional independence in the latent variable models, the longitudinal responses and the missingness process are independent given the latent classes. Parameters that we are interested in are estimated by the method of maximum likelihood based on the above assumption and correlation between responses. In the second approach, the latent variable in the proposed model is continuous and assumed to be normally distributed with unity variance. In the latent variable model, the values of the latent variable are affected by the missing patterns and the latent variable is also a covariate in modeling the longitudinal responses. We use the EM algorithm to obtain the estimates of the parameters and Gauss-Hermite quadrature is used to approximate the integral of the latent variable. The covariance matrix of the estimates can be calculated by using the bootstrap method or obtained from the inverse of the Fisher information matrix of the final marginal likelihood.
机译:由于纵向测量的结果,在当今的公共卫生研究中,遗漏问题非常普遍。本文针对纵向数据提出了两个潜在变量模型,该模型具有信息缺失。在第一种方法中,为分类数据开发了一个潜在变量模型,将观察到的数据分为两个潜在类:“常规”类和“特殊”类。可以使用logistc回归对属于常规班级的结果进行建模,并且特殊班级的结果具有预定值。在潜在变量模型中条件独立的重要假设下,纵向响应和缺失过程在给定潜在类的情况下是独立的。基于上述假设和响应之间的相关性,通过最大似然法估计我们感兴趣的参数。在第二种方法中,所提出的模型中的潜在变量是连续的,并假定为具有正方差的正态分布。在潜变量模型中,潜变量的值受缺失模式的影响,并且潜变量在纵向响应建模中也是协变量。我们使用EM算法来获取参数的估计值,并使用Gauss-Hermite正交来近似潜在变量的积分。估计的协方差矩阵可以使用自举法来计算,或者从最终边际似然的Fisher信息矩阵的逆中获得。

著录项

  • 作者

    Qin Li;

  • 作者单位
  • 年度 2006
  • 总页数
  • 原文格式 PDF
  • 正文语种 en
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号