首页> 外文OA文献 >Electron Density Determination and Bonding in Tetragonal Binary Intermetallics by Convergent Beam Electron Diffraction
【2h】

Electron Density Determination and Bonding in Tetragonal Binary Intermetallics by Convergent Beam Electron Diffraction

机译:会聚束电子衍射法测定四方二元金属间化合物的电子密度和键合

摘要

Intermetallics offer unique property combinations often superior to those of more conventional solid solution alloys of identical composition. Understanding of bonding in intermetallics would greatly accelerate development of intermetallics for advanced and high performance engineering applications. Tetragonal intermetallics L10 ordered TiAl, FePd and FePt are used as model systems to experimentally measure their electron densities using quantitative convergent beam electron diffraction (QCBED) method and then compare details of the 3d-4d (FePd) and 3d-5d (FePt) electron interactions to elucidate their role on properties of the respective ferromagnetic L10-ordered intermetallics FePd and FePt. ud A new multi-beam off-zone axis condition QCBED method has been developed to increase sensitivity of CBED patterns to change of structure factors and the anisotropic Debye-Waller (DW) factors. Unprecedented accuracy and precision in structure and DW factor measurements has been achieved by acquiring CBED patterns using beam-sample geometry that ensures strong dynamical interaction between the fast electrons and the periodic potential in the crystalline samples. This experimental method has been successfully applied to diamond cubic Si, and chemically ordered B2 cubic NiAl, tetragonal L10 ordered TiAl and FePd. The accurate and precise experimental DW and structure factors for L10 TiAl and FePd allow direct evaluation of computer calculations using the current state of the art density functional theory (DFT) based electron structure modeling. The experimental electron density difference map of L10 TiAl shows that the DFT calculations describe bonding to a sufficient accuracy for s- and p- electrons interaction, e. g., the Al-layer. However, it indicate significant quantitative differences to the experimental measurements for the 3d-3d interactions of the Ti atoms, e.g. in the Ti layers. The DFT calculations for L10 FePd also show that the current DFT approximations insufficiently describe the interaction between Fe-Fe (3d-3d), Fe-Pd (3d-4d) and Pd-Pd (4d-4d) electrons, which indicates the necessity to evaluate applicability of different DFT approximations, and also provides experimental data for the development of new DFT approximation that better describes transition metal based intermetallic systems.ud
机译:金属间化合物提供独特的性能组合,通常优于组成相同的更常规的固溶合金。了解金属间化合物中的键合将极大地加快用于高级和高性能工程应用的金属间化合物的开发。使用四方金属间化合物L10排序的TiAl,FePd和FePt作为模型系统,通过定量会聚束电子衍射(QCBED)方法实验测量其电子密度,然后比较3d-4d(FePd)和3d-5d(FePt)电子的细节相互作用,以阐明它们对铁磁L10有序金属间化合物FePd和FePt的性能的作用。 ud已经开发了一种新的多光束离区轴条件QCBED方法,以提高CBED图案对结构因子和各向异性Debye-Waller(DW)因子变化的敏感性。通过使用束样本几何结构获取CBED模式,可确保结构中的快速电子与晶体样品中的周期性电势之间发生强大的动力学相互作用,从而获得了前所未有的结构和DW因子测量的精度和精确度。该实验方法已成功应用于金刚石立方Si,化学有序B2立方NiAl,四方L10有序TiAl和FePd。 L10 TiAl和FePd的精确而精确的实验DW和结构因子,可以使用基于当前最先进的密度泛函理论(DFT)的电子结构模型直接评估计算机计算。 L10 TiAl的实验电子密度差图显示,DFT计算描述了对于s电子和p电子相互作用具有足够精确度的键合。例如,铝层。但是,这表明与Ti原子3d-3d相互作用的实验测量值存在显着的定量差异,例如:在钛层中。 L10 FePd的DFT计算还表明,当前的DFT近似值不足以描述Fe-Fe(3d-3d),Fe-Pd(3d-4d)和Pd-Pd(4d-4d)电子之间的相互作用,这表明了必要性评估不同DFT近似的适用性,并为开发新的DFT近似提供实验数据,以更好地描述基于过渡金属的金属间体系。

著录项

  • 作者

    Sang Xiahan;

  • 作者单位
  • 年度 2012
  • 总页数
  • 原文格式 PDF
  • 正文语种 en
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号