首页> 外文OA文献 >Technology Mapping for Circuit Optimization Using Content-Addressable Memory
【2h】

Technology Mapping for Circuit Optimization Using Content-Addressable Memory

机译:使用内容可寻址存储器的电路优化技术映射

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The growing complexity of Field Programmable Gate Arrays (FPGA's) is leading to architectures with high input cardinality look-up tables (LUT's). This thesis describes a methodology for area-minimizing technology mapping for combinational logic, specifically designed for such FPGA architectures. This methodology, called LURU, leverages the parallel search capabilities of Content-Addressable Memories (CAM's) to outperform traditional mapping algorithms in both execution time and quality of results. The LURU algorithm is fundamentally different from other techniques for technology mapping in that LURU uses textual string representations of circuit topology in order to efficiently store and search for circuit patterns in a CAM. A circuit is mapped to the target LUT technology using both exact and inexact string matching techniques. Common subcircuit expressions (CSE's) are also identified and used for architectural optimization---a small set of CSE's is shown to effectively cover an average of 96% of the test circuits. LURU was tested with the ISCAS'85 suite of combinational benchmark circuits and compared with the mapping algorithms FlowMap and CutMap. The area reduction shown by LURU is, on average, 20% better compared to FlowMap and CutMap. The asymptotic runtime complexity of LURU is shown to be better than that of both FlowMap and CutMap.
机译:现场可编程门阵列(FPGA)的日益复杂性正导致具有高输入基数查找表(LUT)的体系结构。本文描述了一种用于组合逻辑的面积最小化技术映射的方法,该方法专门针对此类FPGA架构而设计。这种称为LURU的方法论利用了内容可寻址存储器(CAM)的并行搜索功能,在执行时间和结果质量方面均优于传统的映射算法。 LURU算法从根本上不同于其他技术映射技术,因为LURU使用电路拓扑的文本字符串表示形式来有效地存储和搜索CAM中的电路模式。使用精确和不精确的字符串匹配技术将电路映射到目标LUT技术。还可以识别常见的子电路表达式(CSE)并将其用于体系结构优化-一小部分CSE可以有效覆盖平均96%的测试电路。 LURU已通过ISCAS'85组合基准电路套件进行了测试,并与映射算法FlowMap和CutMap进行了比较。与FlowMap和CutMap相比,LURU所显示的面积缩减平均提高了20%。 LURU的渐近运行时复杂度显示出比FlowMap和CutMap都更好。

著录项

  • 作者

    Lucas Joshua Michael;

  • 作者单位
  • 年度 2006
  • 总页数
  • 原文格式 PDF
  • 正文语种 en
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号