首页> 外文OA文献 >Understanding the Mechanism of Simultaneously Oelophobic/Hydrophilic Perfluoropolyether (PFPE) Nano-Coatings
【2h】

Understanding the Mechanism of Simultaneously Oelophobic/Hydrophilic Perfluoropolyether (PFPE) Nano-Coatings

机译:同时了解疏油/亲水性全氟聚醚(PFPE)纳米涂层的机理

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

This dissertation is focused on understanding the mechanism of simultaneously oleophobic/hydrophilic perfluoropolyether (PFPE) nano-coatings. Four specific topics are presented: 1) investigate why can a nanometer-thick polymer coated surface be more wettable to water than to oil; 2) discuss the effect of end-groups on simultaneous oleophobicity/hydrophilicity and testify the anti-fogging performance of nanometer-thick PFPEs; 3) Fabricate nanometer-thick simultaneously oleophobic/hydrophilic coatings via a cost-effective photochemical approach; 4) study the role of the interfacial interaction in the slow relaxation of nanometer-thick polymer melts on a solid surface. udSpecifically, chapter 2 and chapter 3 indicate that the simultaneously oleophobic/hydrophilic behavior is kinetic in nature and results from the combination of nanoscale and interfacial phenomena. The end-groups of the nanometer-thick PFPEs are critical to this peculiar wetting behavior: PFPE polymers with different end-groups can interact with the substrate in very different ways, resulting in different packing orders and thus different inter-chain distances within the polymer nanofilms. If the inter-chain distance is appropriately small, smaller water molecules penetrate the nanofilms quickly while larger oil molecules penetrate the nanofilms much more slowly. As a result, the surface shows a higher oil contact angle (OCA) than water contact angle (WCA). Moreover, the effect of simultaneous oleophobicity/hydrophilicity on the long-term anti-fogging capability has been studied by X-ray photoelectron spectroscopy (XPS) and anti-fogging tests. The results indicated that the unique simultaneous oleophobicity/hydrophilicity reduces the airborne hydrocarbon contamination and therefore improves the long-term anti-fogging performance. In chapter 4, an UV-based photochemical approach has been developed to fabricate nanometer-thick simultaneously oleophobic/hydrophilic coatings using cost-effective PFPEs without polar end-groups and the anti-fogging performance and mechanical robustness of the coating were studied. The photochemical approach established here potentially can be applied on many other polymers and greatly accelerates the development and application of simultaneously oleophobic/hydrophilic coatings. In chapter 5, the relaxation of nanometer-thick PFPE melts on a silicon wafer has been investigated by water contact angle measurement. This work reports that the relaxation of nanometer-thick polymer melts on a solid surface is much slower than in the bulk, which has been attributed to the low mobility of the anchored polymer chains and the motional cooperativity between anchored and free polymer chains in the nanometer-thick films.
机译:本论文着重于了解同时疏油/亲水全氟聚醚(PFPE)纳米涂层的机理。提出了四个具体主题:1)研究为什么纳米级聚合物涂层表面对水比对油更易润湿; 2)讨论了端基对同时疏油/亲水性的影响,并证明了纳米级PFPE的防雾性能; 3)通过具有成本效益的光化学方法同时制备纳米厚的疏油/亲水涂层; 4)研究界面相互作用在固体表面纳米厚度聚合物熔体缓慢弛豫中的作用。特别是,第2章和第3章指出,同时的疏油/亲水行为本质上是动力学的,是纳米级和界面现象共同作用的结果。纳米级PFPE的端基对于这种特殊的润湿行为至关重要:具有不同端基的PFPE聚合物可以以非常不同的方式与基材相互作用,从而导致不同的堆积顺序,从而导致聚合物内链间距离不同纳米膜。如果链间距离适当地小,则较小的水分子快速渗透纳米膜,而较大的油分子缓慢渗透纳米膜。结果,该表面显示出比水接触角(WCA)高的油接触角(OCA)。此外,已经通过X射线光电子能谱(XPS)和抗雾测试研究了同时疏油/亲水性对长期抗雾能力的影响。结果表明,独特的同时疏油性/亲水性减少了空气中的烃类污染,因此改善了长期的防雾性能。在第4章中,开发了一种基于UV的光化学方法,该方法使用具有极性端基的经济高效PFPE制造纳米厚的同时疏油/亲水涂层,并研究了该涂层的防雾性能和机械强度。此处建立的光化学方法可能可以应用于许多其他聚合物,并大大加快了同时疏油/亲水涂层的开发和应用。在第5章中,通过水接触角测量研究了纳米厚PFPE熔体在硅晶片上的弛豫。这项工作报告说,在固体表面上纳米厚的聚合物熔体的弛豫比在主体表面上慢得多,这归因于锚定的聚合物链的低迁移率以及锚定的和自由的聚合物链之间的运动协同性。厚的电影。

著录项

  • 作者

    Wang Yongjin;

  • 作者单位
  • 年度 2016
  • 总页数
  • 原文格式 PDF
  • 正文语种 en
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号