首页> 外文OA文献 >Contact Metal-Dependent Electrical Transport in Carbon Nanotubes and Fabrication of Graphene Nanoribbons
【2h】

Contact Metal-Dependent Electrical Transport in Carbon Nanotubes and Fabrication of Graphene Nanoribbons

机译:碳纳米管中依赖于接触金属的电传输和石墨烯纳米带的制造

摘要

In this thesis, we fabricate and characterize carbon nanotube (CNT) and graphene-based field effect transistor devices. The CNT-based work centers on the physics of metal contacts to CNT, particularly relating the work function of contact metals to carrier transport across the junction. The graphene work is motivated by the desire to utilize the high carrier mobility of graphene in field effect transistors. udWe introduce a surface-inversion channel (SIC) model based on low temperature and electrical measurements of a distinct single-walled semiconducting CNT contacted by Hf, Cr, Ti and Pd electrodes. Anomalous barrier heights and metal-contact dependent band-to-band tunneling phenomena are utilized to show that dependent upon contact work function and gate field, transport occurs either directly between the metal and CNT channel or indirectly via injection of carriers from the metal-covered CNT region to the CNT channel. The model is consistent with previously contradictory experimental results, and the methodology is simple enough to apply in other contact-dominant systems.udWe further develop a model explain Isd-Vsd tendencies in CNT FETs. Using experimental and analytical analysis, we demonstrate a relationship between the contact metal work function and electrical transport properties saturation current (Isat) and differential conductance in ambient exposed CNT. A single chemical vapor deposition (CVD)-grown 6 millimeter long semiconducting single-walled CNT is electrically contacted with a statistically significant number of Hf, Cr, Ti, Pd, and Ti, Au electrodes, respectively. The observed exponentially increasing relationship of Isat and with metal-contact work function that is explained by a theoretical model derived from thermionic field emission. udNext, a performance analysis on CNT Schottky diodes using source-drain current anisotropy is explored. An analytical model is derived based on thermionic field emission and used to correlate experimental data from Pd-Hf, Ti-Hf, Cr-Hf, Ti-Cr, and Pd-Au mixed metal devices fabricated on one single 6 mm-long CNT. Results suggest that the difference in work functions of the two contact-metals, and not a dominant Schottky contact, determines diode performance. Results are further applied and demonstrated in a reversible polarity diode.udLastly, we investigate the effect of UV irradiation of graphene, CNT, and graphene/CNT hybrids in an oxygen environment. Samples were irradiated by 254/185 nm UV light in an oxygen environment for up to two hours. Results suggest a unique method to generate graphene nanoribbons using aligned carbon nanotubes (CNT) as a graphene etch mask. Ambient and cryogenic Gsd-Vg measurements of resulting ultra-thin graphene nanoribbons show p-type character and field effect GOn/GOff > 10^4.ud
机译:在本文中,我们制造并表征了碳纳米管(CNT)和基于石墨烯的场效应晶体管器件。基于CNT的工作集中在与CNT的金属接触的物理学上,特别是使接触金属的功函数与跨结的载流子传输有关。期望在场效应晶体管中利用石墨烯的高载流子迁移率来激发石墨烯的工作。 ud我们基于低温和由Hf,Cr,Ti和Pd电极接触的独特单壁半导体CNT的电学测量引入了表面反转通道(SIC)模型。异常的势垒高度和与金属接触有关的带间隧穿现象被用来表明,取决于接触功函数和栅极场,传输直接发生在金属和CNT通道之间,或者间接地通过注入载有金属的载流子而间接发生CNT区域到CNT通道。该模型与以前相互矛盾的实验结果一致,并且该方法足够简单,可以应用于其他以接触为主的系统。 ud我们将进一步开发一个解释CNT FET中Isd-Vsd趋势的模型。使用实验和分析分析,我们证明了接触金属功函数与电传输特性饱和电流(Isat)和周围暴露的CNT中的差分电导之间的关系。将单化学气相沉积(CVD)生长的6毫米长的半导体单壁CNT分别与统计显着数量的Hf,Cr,Ti,Pd和Ti,Au电极电接触。 Isat与金属接触功函数之间的关系呈指数增长,这是由热电子场发射得出的理论模型解释的。 ud下一步,利用源极-漏极电流各向异性对CNT肖特基二极管进行了性能分析。基于热电子场发射得出分析模型,并将其用于关联在单个6毫米长的CNT上制造的Pd-Hf,Ti-Hf,Cr-Hf,Ti-Cr和Pd-Au混合金属器件的实验数据。结果表明,两种接触金属(而不是主要的肖特基接触)的功函数差异决定了二极管的性能。结果进一步在可逆极性二极管中得到应用和证明。 ud最后,我们研究了在氧气环境中紫外线辐照石墨烯,CNT和石墨烯/ CNT杂化物的效果。在氧气环境中,样品用254/185 nm紫外线照射长达两个小时。结果表明,使用对齐的碳纳米管(CNT)作为石墨烯刻蚀掩模来生成石墨烯纳米带的独特方法。所得超薄石墨烯纳米带的环境和低温Gsd-Vg测量显示p型特征和场效应GOn / GOff> 10 ^ 4。 ud

著录项

  • 作者

    Perello David;

  • 作者单位
  • 年度 2013
  • 总页数
  • 原文格式 PDF
  • 正文语种 en
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号