首页> 外文OA文献 >Micromechanical Simulations of Heart Valve Tissues
【2h】

Micromechanical Simulations of Heart Valve Tissues

机译:心脏瓣膜组织的微力学模拟

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Heart valve disease is generally treated by surgical replacement with either a mechanical or bioprosthetic valve. While prosthetic valves perform remarkably well, having significantly reduced patient mortality since their inception in 1960, each type exhibits specific drawbacks. Specifically, thrombosis and anticoagulation in the case of mechanical valves; calcific and fatigue-related degeneration in bioprosthetic heart valve (BHV). In attempt to improve the durability of BHV, recent studies have focused on quantifying the biomechanical interactions between the organ, tissue, and cellular-level components in native heart valve and BHV tissues. Such data is considered fundamental to designing improved BHV, and ultimately may be useful in the design of tissue engineered heart valves (TEHV).The goals of this research were two-fold: (1) to simulate layer-specific mechanical property changes incurred by the porcine BHV with fatigue, and (2) to simulate the cellular-level deformation of valve interstitial cells (VIC) nuclei under organ-level transvalvular pressures. For the first goal, parametric studies were conducted to isolate the effective modulii of the individual layers using finite element simulations of native and BHV tissues in flexure. The finite element simulations isolated fatigue-related changes in the overall effective modulus of BHV tissues specifically to the collagen-rich fibrosa layer. These results may be useful in designing improved BHV, as novel fixatives and fixation methods may have the capacity to target specific layers of the BHV tissue. For the second goal, cellular-level VIC nuclei deformations were quantified experimentally by analyzing images of histological sections prepared from native porcine aortic valves subjected to transvalvular pressures. Finite element simulations were conducted to quantify the relationship between organ-level transvalvular pressure, concomitant tissue-level strain, and ultimate cellular-level VIC nuclei deformation. The cellular-level image analysis studies uncovered layer-specific, positive relationships between VIC nuclei deformations and transvalvular pressure. These data were found to correlate with previously published data on the associated collagen fiber architecture, providing insight into the tissue-to-cellular level mechanical coupling predicted by the finite element simulations. These results may be useful in designing TEHV, as evidence suggests that the secretion and organization of extracellular matrix (ECM) (e.g., collagen) by the constituent cells of a TEHV can be modulated by mechanical deformation.To the best of our knowledge, the simulations presented herein represent the first attempt to quantify layer-specific changes in porcine BHV tissue mechanical properties with fatigue. Moreover, we report the first information on the cellular-level deformation of VIC nuclei under transvalvular pressures, including experimental analysis of the native porcine aortic valve, as well as rigorous finite element simulations. These micromechanical simulations thus offer new data on the biomechanical behavior of heart valve tissues, and may contribute to the design of improved BHV and TEHV.
机译:心脏瓣膜疾病通常通过用机械瓣膜或生物瓣膜置换手术来治疗。自从1960年问世以来,人工瓣膜的性能非常好,大大降低了患者的死亡率,但每种瓣膜都有其特定的缺点。特别是机械瓣膜血栓形成和抗凝;人工心脏瓣膜(BHV)发生钙化和与疲劳相关的变性。为了提高BHV的耐用性,最近的研究集中在量化天然心脏瓣膜和BHV组织中器官,组织和细胞水平成分之间的生物力学相互作用。这些数据被认为是设计改进的BHV的基础,最终可能对组织工程心脏瓣膜(TEHV)的设计有用。这项研究的目标有两个方面:(1)模拟由BHV引起的特定层的机械性能变化。 (2)模拟在器官水平跨瓣膜压力下瓣膜间质细胞(VIC)核的细胞水平变形。为了第一个目标,进行了参数研究,以使用弯曲的天然和BHV组织的有限元模拟来隔离各个层的有效模量。有限元模拟将疲劳相关的BHV组织的总有效模量变化(尤其是富含胶原的纤维层)隔离开来。这些结果在设计改进的BHV方面可能有用,因为新型固定剂和固定方法可能具有靶向BHV组织特定层的能力。对于第二个目标,通过分析从经受跨瓣压力的天然猪主动脉瓣膜制备的组织学切片图像,通过实验对细胞水平的VIC核变形进行定量。进行了有限元模拟,以量化器官水平跨瓣膜压力,伴随的组织水平应变和最终细胞水平的VIC核变形之间的关系。细胞水平的图像分析研究发现了VIC核变形与跨瓣压力之间特定的,正相关的层。发现这些数据与先前发表的有关胶原纤维结构的数据相关,从而提供了对有限元模拟所预测的组织-细胞水平机械耦合的见解。这些结果可能对设计TEHV有用,因为有证据表明,通过机械变形可以调节TEHV组成细胞的细胞外基质(ECM)(例如胶原蛋白)的分泌和组织。本文提供的模拟代表了对尝试量化具有疲劳的猪BHV组织机械特性中的特定于层的变化的尝试。此外,我们报告了在经瓣膜压力下VIC核的细胞水平形变的第一个信息,包括天然猪主动脉瓣的实验分析以及严格的有限元模拟。这些微机械仿真因此提供了有关心脏瓣膜组织生物力学行为的新数据,并且可能有助于改进BHV和TEHV的设计。

著录项

  • 作者

    Huang Hsiao-Ying Shadow;

  • 作者单位
  • 年度 2004
  • 总页数
  • 原文格式 PDF
  • 正文语种 en
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号