首页> 外文OA文献 >Numerical Modeling of the Dynamics and Heat Transfer of Impacting Sprays for a Wide Range of Pressures.
【2h】

Numerical Modeling of the Dynamics and Heat Transfer of Impacting Sprays for a Wide Range of Pressures.

机译:各种压力下冲击喷雾动力学和传热的数值模型。

摘要

A numerical model is developed to simulate the impingement of liquid sprays on surfaces heated at temperatures ranging from nucleate to film boiling. The droplets are modeled in the Lagrangian frame of reference, and are dispersed stochastically in the continuous gas phase. The model is based on the fundamental basics of single droplet impingements extended to full sprays, where the overall heat transfer process is broken down into its basic components: conduction associated with the droplet contact, bulk air convection, and surface radiation. Droplet dynamics at the wall are modeled based on an empirical correlation relating the droplet incoming to outgoing Weber number. Droplet contact heat transfer is modeled using an effectiveness parameter for the heat transfer that is a function of the droplet Weber number. This attempt of numerically modeling the droplet-wall dynamics with multiple wall collisions and the droplet contact heat transfer has not been addressed before in a numerical model. Simulations are presented for: single-stream droplet impactions, multiple-streams droplet impactions, and conical sprays.The model is tested at atmospheric pressure using experimental data for nozzles that dispense non-uniform droplets. Favorable comparison with the test data is demonstrated. The model capability is then extended to simulate high and sub-atmospheric ambient pressure conditions with a proper accounting of the droplet-wall interaction and air-mist heat transfer mechanism. At high and sub-atmospheric pressures, the model was tested against experiments for single stream impactions at various pressures.Spray simulation conducted for a wide range of pressures reveals the following important issues regarding to the droplet dynamics, heat transfer and vaporization: 1) At higher pressures, the larger the droplet size, the better is the droplet-wall impaction, while for sub-atmospheric pressures, larger droplets have a detrimental effect due to their ballistic impaction. 2) At higher pressures, the Leidenfrost point shifts to a higher temperature that leads to an increase in the droplet wetting capability, and to a higher heat transfer effectiveness. 3) At higher pressures, more vapor is generated from each droplet impaction on the surface, resulting also in an increase in the heat transfer effectiveness.
机译:建立了一个数值模型来模拟液体喷雾在从成核到薄膜沸腾的温度下加热的表面上的撞击。液滴在拉格朗日参照系中建模,并在连续气相中随机分散。该模型基于扩展到全喷雾的单个液滴撞击的基本原理,其中整个传热过程分为其基本组成部分:与液滴接触相关的传导,大量空气对流和表面辐射。基于经验相关性对壁上的液滴动力学进行建模,该经验相关性将入射的液滴与输出的韦伯数相关。使用与液滴韦伯数有关的传热效率参数对液滴接触传热进行建模。以前在数值模型中尚未解决这种通过多次壁碰撞和液滴接触传热对液滴-壁动力学进行数值建模的尝试。进行了以下模拟:单流液滴撞击,多流液滴撞击和锥形喷雾。使用分配不均匀液滴的喷嘴的实验数据在大气压下测试该模型。证明了与测试数据的有利比较。然后,通过适当考虑液滴与壁之间的相互作用以及气雾传热机制,可以扩展模型的功能,以模拟高气压和低于大气压的环境压力条件。在高和低于大气压的压力下,针对各种压力下的单流撞击实验对模型进行了测试,对各种压力进行的喷雾模拟揭示了以下有关液滴动态,传热和汽化的重要问题:1)在压力越高,液滴的大小越大,液滴壁的撞击力越好,而对于低于大气压的压力,较大的液滴会由于其弹道撞击而产生不利影响。 2)在较高的压力下,莱顿弗罗斯特点移至较高的温度,这导致液滴的润湿能力增强,并具有较高的传热效率。 3)在较高的压力下,表面上的每个液滴撞击都会产生更多的蒸汽,从而也提高了传热效率。

著录项

  • 作者

    Issa Roy Jean;

  • 作者单位
  • 年度 2004
  • 总页数
  • 原文格式 PDF
  • 正文语种 en
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号