首页> 外文OA文献 >PARTIAL LEAST SQUARES ON DATA WITH MISSING COVARIATES: A COMPARISON APPROACH
【2h】

PARTIAL LEAST SQUARES ON DATA WITH MISSING COVARIATES: A COMPARISON APPROACH

机译:数据缺失的偏最小二乘方:一种比较方法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The correlation between any two random variables can be estimated using a variety of techniques including parametric methods based on the Pearson correlation coefficient, nonparametric methods, and regression analysis. While these estimators have been widely used, the computation of these estimates in the presence of missing data has not been as widely studied. There has been some work addressing the estimation of parameters in the presence of missing data for regression analysis; including imputation, inverse probability weighted regression and weighted estimating equations. However, there has been little work focused on the estimation of the correlation coefficient. To assess the usefulness of these methods in a practical setting, we present simulation studies comparing imputation, inverse probability weighting and complete cases and provide recommendations on the basis of these results. Furthermore, computation of Partial Least Squares (PLS) scores with the correlation matrix computed using the above mentioned techniques are also presented. We apply these results in a positron emission tomography data set consisting of several different brain regions as response variables and cognitive tasks as covariates of interest. Alzheimer's disease is a progressive and fatal health disease. The application presented in this work is significant for public health since it provides us with a better understanding of variability in different brain regions as it relates to neuropsychological tests that are helpful in diagnosis of progressive brain disease (i.e Alzheimer's disease).
机译:可以使用多种技术来估计任意两个随机变量之间的相关性,包括基于Pearson相关系数的参数方法,非参数方法以及回归分析。尽管这些估计器已被广泛使用,但是在缺少数据的情况下,这些估计的计算尚未得到广泛研究。已经进行了一些工作,以解决在缺少数据以进行回归分析时参数估计的问题。包括估算,逆概率加权回归和加权估计方程。但是,很少有工作集中在相关系数的估计上。为了评估这些方法在实际环境中的有效性,我们提供了模拟研究,比较了估算,反概率加权和完整案例,并根据这些结果提供了建议。此外,还介绍了使用上述技术计算出的具有相关矩阵的偏最小二乘(PLS)分数的计算方法。我们将这些结果应用于正电子发射断层扫描数据集,该数据集由几个不同的大脑区域作为响应变量,而认知任务作为感兴趣的协变量。阿尔茨海默氏病是一种进行性和致命性的健康疾病。这项工作中提出的应用程序对公共卫生具有重要意义,因为它与神经心理学测试有关,有助于我们更好地了解不同大脑区域的变异性,这些神经心理学测试有助于诊断进行性脑部疾病(即阿尔茨海默氏病)。

著录项

  • 作者

    Tudorascu Dana Larisa;

  • 作者单位
  • 年度 2009
  • 总页数
  • 原文格式 PDF
  • 正文语种 en
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号