首页> 外文OA文献 >Performance of rank-minimization under different scenarios: a simulation study focusing on baseline covariates imbalances in clinical trials
【2h】

Performance of rank-minimization under different scenarios: a simulation study focusing on baseline covariates imbalances in clinical trials

机译:在不同情况下的排名最小化表现:一项针对临床试验中基线协变量失衡的模拟研究

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Clinical trials are often considered to be the gold standard for assessing effectiveness and safety of medical treatments and public health interventions. The validity of inferences from clinical trials depends on randomizing subjects to different treatment groups. Although simple randomization is the most common approach, and generally prevents differences in baseline covariate imbalances between groups, other approaches may be necessary for balancing covariate distributions within important strata. However, the performance of stratified randomization may be limited when the sample size is small and there are many strata. These scenarios may be better addressed through minimization, or rank-minimization algorithms. udThe concept of rank-minimization is straightforward but very little research has been published on the topic. To address this gap in the literature, we conducted a simulation study to investigate how rank-minimization performed, compared to Taves’ minimization, with different sample sizes and baseline covariate distributions. udResults indicated that both sample size and covariate distributions influence the performance of rank-minimization and minimization. Overall, rank-minimization yields better properties, and larger sample sizes yield better properties for both methods. However, the performance for both methods decreases when the distribution is more skewed. Results of this study provide researchers with more information to decide between randomization methods for their specific applications.udPublic Health Significance: In clinical trials, the comparability of subjects between different treatment groups is critical to validity of the subsequent inferences. Since clinical trials are often considered the gold standard for assessing medical treatments and public health interventions, and the trials are usually expensive and time-consuming to conduct, optimizing the randomization process represents a highly significant aspect of public health research. Consulting results of the simulation study will provide additional information for researchers to decide the best method for randomization for different size data sets and different covariate distributions encountered in practice.
机译:临床试验通常被认为是评估医疗和公共卫生干预措施的有效性和安全性的金标准。临床试验推断的有效性取决于将受试者随机分配到不同的治疗组。尽管简单随机化是最常见的方法,并且通常可以防止组之间基线协变量不平衡的差异,但是可能需要其他方法来平衡重要层次中的协变量分布。但是,当样本量较小且层数很多时,分层随机化的性能可能会受到限制。通过最小化或等级最小化算法,可以更好地解决这些情况。 ud-minimization的概念很简单,但是关于该主题的研究很少。为了弥补文献中的这一空白,我们进行了一项仿真研究,以研究在不同样本量和基线协变量分布的情况下,与Taves最小化相比,秩最小化是如何进行的。 ud结果表明,样本量和协变量分布都会影响等级最小化和最小化的性能。总的来说,最小化排序会产生更好的性能,而更大的样本量会为两种方法带来更好的性能。但是,当分布更偏斜时,两种方法的性能都会下降。这项研究的结果为研究人员提供了更多信息,以决定针对其特定应用的随机方法。 ud公共卫生意义:在临床试验中,不同治疗组之间受试者的可比性对于后续推论的有效性至关重要。由于临床试验通常被认为是评估药物治疗和公共卫生干预措施的黄金标准,并且试验通常昂贵且耗时,因此优化随机化过程代表了公共卫生研究的高度重要的方面。模拟研究的咨询结果将为研究人员提供更多信息,以便为在实践中遇到的不同大小的数据集和不同的协变量分布确定最佳的随机化方法。

著录项

  • 作者

    Lin Jung-Yi;

  • 作者单位
  • 年度 2017
  • 总页数
  • 原文格式 PDF
  • 正文语种 en
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号