首页> 外文OA文献 >Examining heterogeneous weight perturbations in neural networks with spike-timing-dependent plasticity
【2h】

Examining heterogeneous weight perturbations in neural networks with spike-timing-dependent plasticity

机译:检查神经网络的异质权重扰动,具有与时序相关的可塑性

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Large-scale cortical networks employing homeostatic mechanisms and synaptic plasticity rules have been shown to differentiate into neural ensembles when common stimuli are applied in tandem to selected subsets of neurons. These ensembles were found to be stable in response to small perturbations to synaptic strengths—such ensemble stability is a critical feature for network-based memory. Previous studies applied relatively simple perturbations to probe the stability of the network—all synapses within a given population were lowered by a uniform percentage. The goal of this work has been to analyze whether more complex perturbations can reveal more information about network stability. Towards this aim, we constructed a reduced stochastic Wilson-Cowan model, which captures the same perturbation phenomenon observed in spiking simulations, but which is analytically much simpler. We found that when the mean self-excitatory synaptic weight for a population was preserved, perturbations that were distributed more evenly among synapses would lead to a more stable response than focused perturbations, and that this was caused by quantization of neural activity levels within a population.
机译:当将共同刺激串联应用于神经元的选定子集时,采用稳态机制和突触可塑性规则的大规模皮质网络已显示出分化为神经团。发现这些集合对于对突触强度的小扰动是稳定的-这样的集合稳定性是基于网络的内存的关键特征。先前的研究使用相对简单的扰动来探测网络的稳定性-给定种群中的所有突触均以统一的百分比降低。这项工作的目的是分析更复杂的扰动是否可以揭示有关网络稳定性的更多信息。为了实现这一目标,我们构建了一个简化的随机Wilson-Cowan模型,该模型可以捕获在尖峰模拟中观察到的相同的摄动现象,但是在分析上要简单得多。我们发现,当保留了群体的平均自我兴奋性突触权重时,与集中性扰动相比,在突触之间更均匀分布的扰动会导致更稳定的响应,这是由群体内神经活动水平的量化引起的。

著录项

  • 作者

    Bredenberg Colin;

  • 作者单位
  • 年度 2017
  • 总页数
  • 原文格式 PDF
  • 正文语种 en
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号