首页> 外文OA文献 >Privacy-Preserving Data Publishing in the Cloud: A Multi-level Utility Controlled Approach
【2h】

Privacy-Preserving Data Publishing in the Cloud: A Multi-level Utility Controlled Approach

机译:在云中保护隐私的数据发布:多级实用程序控制方法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

© 2015 IEEE. Conventional private data publication schemes are targeted at publication of sensitive datasets with the objective of retaining as much utility as possible for statistical (aggregate) queries while ensuring the privacy of individuals' information. However, such an approach to data publishing is no longer applicable in shared multi-tenant cloud scenarios where users often have different levels of access to the same data. In this paper, we present a privacy-preserving data publishing framework for publishing large datasets with the goals of providing different levels of utility to the users based on their access privileges. We design and implement our proposed multi-level utility-controlled data anonymization schemes in the context of large association graphs considering three levels of user utility namely: (i) users having access to only the graph structure (ii) users having access to graph structure and aggregate query results and (iii) users having access to graph structure, aggregate query results as well as individual associations. Our experiments on real large association graphs show that the proposed techniques are effective, scalable and yield the required level of privacy and utility for user-specific utility and access privilege levels.
机译:©2015 IEEE。常规的私人数据发布方案的目标是敏感数据集的发布,其目的是在确保个人信息隐私的同时,保留尽可能多的统计(汇总)查询实用性。但是,这种数据发布方法不再适用于共享多租户云方案,在这种方案中,用户通常对同一数据具有不同级别的访问权限。在本文中,我们提出了一个隐私保护数据发布框架,用于发布大型数据集,目的是根据用户的访问权限为用户提供不同级别的实用程序。我们在考虑大型用户图的三个关联级别的情况下,设计和实现我们提出的多级效用控制的数据匿名方案,该方案考虑了三个级别的用户效用:(i)仅可访问图结构的用户(ii)可访问图结构的用户以及汇总查询结果,以及(iii)有权使用图结构,汇总查询结果以及各个关联的用户。我们在真实大型关联图上的实验表明,所提出的技术是有效的,可伸缩的,并且可以为用户特定的实用程序和访问特权级别提供所需的隐私和实用程序级别。

著录项

  • 作者

    Palanisamy B; Liu L;

  • 作者单位
  • 年度 2015
  • 总页数
  • 原文格式 PDF
  • 正文语种 en
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号