首页> 外文OA文献 >Rare Events in International Relations: Modeling Heterogeneity and Interdependence with Sparse Data
【2h】

Rare Events in International Relations: Modeling Heterogeneity and Interdependence with Sparse Data

机译:国际关系中的罕见事件:利用稀疏数据建模异质性和相互依赖性

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The interdependence of international events is obvious to even casual observers of global politics. History is replete with examples of events repeating within states and/or being influenced by outcomes in other states. Despite this, much of the current literature in International Relations either mishandles or outright neglects this dependence, thereby threatening the credibility of our inferences. In large part, this stems from the difficulty of modeling such dependence when one's data are binary and rare, as they often are for many of the most widely-studied phenomena in IR (e.g., violent conflict, economic crises, etcldots). For data of this type, commonly-used strategies to capture dependence are frequently ill-suited and, as such, new approaches are required. Therefore, this thesis aims to clarify the empirical challenges which arise from these data, detail the problems with existing approaches, and offer alternatives which should be preferred. ududThe focus is principally on two potential (and related) sources of bias which may arise within binary time-series cross-sectional (b-TSCS) data: true (inter-)dependence and unit heterogeneity. In the first, the outcomes, actions, and/or choices of some unit-times depend directly on those of other unit-times. To model both spatial and serial dependence in such data, a spatiotemporal-lag probit model estimated using maximum-simulated-likelihood using recursive-importance-sampling (MSL-by-RIS) is presented. This allows us to directly model the dependence of the lagged-latent outcomes, which is shown to have several advantages over models using the observed indicator (e.g., model consistency, effects estimation, predictive accuracy). The second main focus is on the threat of unobserved unit heterogeneity, that is, when time-invariant unit-characteristics influence the outcome, action, choice, but go unmodeled. While fixed effects estimators are traditionally the solution to this issue, such models have received heavy criticism in political science applications with b-TSCS data. In light of these criticisms, a penalized-maximum-likelihood fixed-effects (PML-FE) model is proposed which suffers from few of these drawbacks and permits the estimation of novel unit-specific substantive effects. In addition, original analyses into intrastate conflict and financial crises are offered to highlight the value of these approaches for testing existing, and motivating new, theories of international behavior.
机译:对于国际政治的偶然观察者来说,国际事件的相互依存也是显而易见的。历史上充斥着事件在一个州内重复发生和/或受其他州的结果影响的例子。尽管如此,当前国际关系中的许多文献要么处理不当,要么完全忽略了这种依赖性,从而威胁到我们推论的可信度。在很大程度上,这是由于难以对一个人的数据进行二进制化和稀疏化来对这种依赖进行建模,因为这种关系通常是IR中许多受到最广泛研究的现象(例如暴力冲突,经济危机等)。对于这种类型的数据,捕获依赖关系的常用策略经常不合适,因此需要新的方法。因此,本论文旨在阐明由这些数据引起的经验挑战,详细介绍现有方法存在的问题,并提供应优先选择的替代方法。 ud ud重点主要放在二进制时间序列横截面(b-TSCS)数据中可能出现的两个潜在的(和相关的)偏差源:真实(相互)依赖性和单位异质性。首先,某些单位时间的结果,行动和/或选择直接取决于其他单位时间的结果,行动和/或选择。为了对此类数据中的空间和序列依赖性进行建模,提出了使用时空时滞概率模型,该模型使用递归重要性采样(MSL-RIS)使用最大模拟似然法进行估计。这使我们能够直接对滞后结果的依赖关系进行建模,与使用观察到的指标的模型相比,模型具有多个优势(例如,模型一致性,效果估计,预测准确性)。第二个主要关注点是未观察到的单元异质性的威胁,即时不变的单元特征影响结果,动作,选择,但没有模型化。尽管传统上固定效应估算器是解决此问题的方法,但此类模型在带有b-TSCS数据的政治科学应用中受到了严重批评。鉴于这些批评,提出了一种受惩罚的最大似然固定效应(PML-FE)模型,该模型受这些缺陷的影响很小,并且可以估算新颖的单位特定的实质效应。此外,还提供了对州内冲突和金融危机的原始分析,以强调这些方法对检验现有的和激发新的国际行为理论的价值。

著录项

  • 作者

    Cook Scott;

  • 作者单位
  • 年度 2014
  • 总页数
  • 原文格式 PDF
  • 正文语种 en
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号