首页> 外文OA文献 >Parameter Estimation via Bayesian Inversion: Theory, Methods, and Applications
【2h】

Parameter Estimation via Bayesian Inversion: Theory, Methods, and Applications

机译:贝叶斯反演的参数估计:理论,方法和应用

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Uncertainty quantification is becoming an increasingly important area of investigation in the field of computational simulations. An understanding in the confidence of a simulation result requires information concerning the uncertainties associated with individual sub-models. The development of mathematical models for physical systems resides in the interpretation of experimental results. Inherent to physically interesting mathematical models is the occurrence of unobservable model parameters. The resolution of information concerning model parameters is typically performed through the use of least-squares regression analysis; however, least-squares analysis does not provide adequate information concerning the confidence which may be placed in the parameter estimates. Bayesian inversion provides quantifiable information concerning the confidence which may be placed in the parameter estimates allowing for overall simulation uncertainty quantification. Here, the application of Bayesian statistics to the general discrete inverse problem is presented. Following the presentation of the Bayesian formulation of the general discrete inverse problem, the procedure is applied to two scientifically interesting inverse problems: the reversible-reaction diffusion inverse problem and the Arrhenius inverse problem. The Arrhenius inverse problem is solved using a novel approach developed here. The novel approach is compared to other probabilistic and deterministic approaches to assess the validity of the method.
机译:在计算仿真领域,不确定性量化正在成为研究中越来越重要的领域。对模拟结果的置信度的理解需要有关与各个子模型相关的不确定性的信息。物理系统数学模型的发展在于对实验结果的解释。物理上有趣的数学模型的固有特征是无法观察到的模型参数的出现。有关模型参数的信息的解析通常是通过使用最小二乘回归分析来完成的;但是,最小二乘分析不能提供有关置信度的足够信息,而置信度可以放在参数估计中。贝叶斯反演提供了有关置信度的可量化信息,可以将其放置在参数估计中,以实现整体模拟不确定性量化。这里,提出了贝叶斯统计在一般离散逆问题中的应用。在介绍了一般离散逆问题的贝叶斯公式之后,将该程序应用于两个科学有趣的逆问题:可逆反应扩散逆问题和阿伦尼乌斯逆问题。阿雷尼乌斯逆问题是使用此处开发的新颖方法解决的。将该新颖方法与其他概率和确定性方法进行比较,以评估该方法的有效性。

著录项

  • 作者

    Soncini Ryan;

  • 作者单位
  • 年度 2014
  • 总页数
  • 原文格式 PDF
  • 正文语种 en
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号