首页> 外文OA文献 >An analysis of survey data to determine significant risk factors associated with adolescent marijuana use through utilization of sample weighting methods
【2h】

An analysis of survey data to determine significant risk factors associated with adolescent marijuana use through utilization of sample weighting methods

机译:通过抽样加权方法分析调查数据以确定与青少年大麻使用相关的重大风险因素

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

This investigation seeks to identify factors associated with adolescent marijuana use in the 30 days prior to survey response collection in the 2012 National Survey on Drug Use and Health (NSDUH). Both inverse probability weighted and unweighted backwards elimination multivariate logistic regression modeling techniques were used to determine these factors. Final models compared the magnitude of the difference between odds ratios, the selection of final variables, the statistical significance of selected variables, and the overall fit of the models to determine whether or not we believed a weighted model was more appropriate for this type of complex sampling survey data. ududOur analysis showed that age, tendency towards risky behavior, importance of religious beliefs, academic grades, cigarette use, and alcohol consumption were significant predictors of marijuana use. In addition, the odds of marijuana use in those who smoke cigarettes and consume alcohol are much higher than the odds in those who do not partake in either.ududThe public health significance of this study is that the results can be used to help public health officials understand the risk factors that affect an adolescent’s decision to use marijuana. This insight would allow them to collaborate with policy makers to more accurately identify at risk teens and allow for avoidance, earlier detection, and treatment strategies.ududThe assumptions of logistic regression were met, but few model diagnostics were available for the weighted model due to the lack of appropriate statistical diagnostics in the Stata statistical software. However, based on our results, we believe the weighted model, which incorporates the complex sampling methods used in the data collection, is more sufficient for our data. Although the available diagnostics revealed similar results for both models, we saw notable differences in the odds ratios for race and academic grades, which leads us to believe that weights are a necessary component of the model.
机译:这项调查旨在找出与2012年全国药物使用和健康调查(NSDUH)的调查问卷收集之前的30天内与青少年大麻使用相关的因素。逆概率加权和非加权向后消除多元逻辑回归建模技术均用于确定这些因素。最终模型比较了比值比,最终变量的选择,选定变量的统计显着性以及模型的整体拟合之间的差异的大小,以确定我们是否认为加权模型更适合此类复杂类型抽样调查数据。 ud ud我们的分析表明,年龄,危险行为倾向,宗教信仰的重要性,学业成绩,吸烟和饮酒是大麻使用的重要预测指标。此外,抽烟和饮酒的人使用大麻的几率比不参加这两项的人要高得多。 ud ud本研究的公共卫生意义在于该结果可用于帮助公共卫生官员了解影响青少年决定使用大麻的风险因素。这种见解将使他们能够与决策者合作,以更准确地识别处于风险中的青少年,并避免,早发现和采取治疗策略。 ud ud满足逻辑回归的假设,但很少有模型诊断可用于加权模型由于Stata统计软件中缺少适当的统计诊断功能。但是,基于我们的结果,我们认为加权模型结合了数据收集中使用的复杂采样方法,对于我们的数据而言已经足够了。尽管可用的诊断方法对这两种模型都显示出相似的结果,但我们发现种族和学业成绩的优势比存在显着差异,这使我们相信权重是模型的必要组成部分。

著录项

  • 作者

    Baker Kelsey;

  • 作者单位
  • 年度 2015
  • 总页数
  • 原文格式 PDF
  • 正文语种 en
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号