首页> 外文OA文献 >A Sequential Method for Passive Detection, Characterization, and Localization of Multiple Low Probability of Intercept LFMCW Signals
【2h】

A Sequential Method for Passive Detection, Characterization, and Localization of Multiple Low Probability of Intercept LFMCW Signals

机译:拦截LFMCW信号的多个低概率的被动检测,表征和定位的顺序方法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

A method for passive Detection, Characterization, and Localization (DCL) of multiple low power, Linear Frequency Modulated Continuous Wave (LFMCW) (i.e., Low Probability of Intercept (LPI)) signals is proposed. We demonstrate, via simulation, laboratory, and outdoor experiments, that the method is able to detect and correctly characterize the parameters that define two simultaneous LFMCW signals with probability greater than 90% when the signal to noise ratio is -10 dB or greater. While this performance is compelling, it is far from the Cramer-Rao Lower Bound (CRLB), which we derive, and the performance of the Maximum Likelihood Estimator (MLE), whose performance we simulate. The loss in performance relative to the CRLB and the MLE is the price paid for computational tractability. The LFMCW signal is the focus of this work because of its common use in modern, low-cost radar systems.ududIn contrast to other detection and characterization approaches, such as the MLE and those based on the Wigner-Ville Transform (WVT) or the Wigner-Ville Hough Transform (WVHT), our approach does not begin with a parametric model of the received signal that is specified directly in terms of its LFMCW constituents. Rather, we analyze the signal over time intervals that are short, non-overlapping, and contiguous by modeling it within these intervals as a sum of a small number sinusoidal (i.e., harmonic) components with unknown frequencies, deterministic but unknown amplitudes, unknown order (i.e., number of harmonic components), and unknown noise autocorrelation function. It is this model of the data that makes the solution computationally feasible, but also what leads to a degradation in performance since estimates are not based on the full time series. By modeling the signal in this way, we reliably detect the presence of multiple LFMCW signals in colored noise without the need for prewhitening, efficiently estimate (i.e., characterize) their parameters, provide estimation error variances for a subset of these parameters, and produce Time-Difference-of-Arrival (TDOA) estimates that can be used to estimate the geographical location (i.e., localize) of each LFMCW source. We demonstrate the performance of our method via simulation and real data collections, which are compared to the CRLB.
机译:提出了一种对多个低功率线性调频连续波(LFMCW)(即低拦截概率(LPI))信号进行无源检测,表征和定位(DCL)的方法。我们通过仿真,实验室和室外实验证明,该方法能够检测和正确表征定义两个同时出现的LFMCW信号的参数,当信噪比为-10 dB或更高时,概率大于90%。尽管此性能引人注目,但与我们得出的Cramer-Rao下界(CRLB)以及我们模拟其性能的最大似然估计器(MLE)的性能相去甚远。相对于CRLB和MLE的性能损失是为计算可处理性付出的代价。 LFMCW信号因其在现代,低成本雷达系统中的普遍使用而成为这项工作的重点。 )或Wigner-Ville Hough变换(WVHT),我们的方法并非以直接根据其LFMCW成分指定的接收信号的参数模型开始。相反,我们通过在较短的时间间隔,不重叠的信号和连续的时间间隔内对信号进行分析,方法是在这些时间间隔内将信号建模为频率,确定性但幅度未知,阶数未知的少量正弦(即谐波)分量的总和(即谐波分量的数量)和未知噪声自相关函数。正是这种数据模型使解决方案在计算上可行,但是由于估计值不是基于整个时间序列,因此导致性能下降。通过以这种方式对信号进行建模,我们无需进行预白化就可以可靠地检测到彩色噪声中多个LFMCW信号的存在,有效地估计(即表征)它们的参数,为这些参数的子集提供估计误差方差,并产生时间到达差异(TDOA)估计可用于估计每个LFMCW源的地理位置(即,本地化)。我们通过仿真和真实数据收集(与CRLB进行了比较)证明了我们方法的性能。

著录项

  • 作者

    Hamschin Brandon Michael;

  • 作者单位
  • 年度 2015
  • 总页数
  • 原文格式 PDF
  • 正文语种 en
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号