首页> 外文OA文献 >Micro-Object Manipulation Using Oscillating Bubbles
【2h】

Micro-Object Manipulation Using Oscillating Bubbles

机译:使用振荡气泡的微对象操纵

摘要

This thesis deals with the development of novel manipulation techniques of micro/mini objects using oscillating bubbles. Two major physical principles studied and applied are cavitational microstreaming flows and electrowetting on dielectric (EWOD) actuation in gaseous bubbles. Micro/mini bubbles oscillated and handled in 2-D and 3-D spaces using these two principles are key components serving as carriers of objects to be manipulated. The first type of manipulation system allows us to manipulate mini/micro objects on a 2-D space. A series of bubble operations (creation, elimination, and transportation) and object manipulations (capturing, carrying, and releasing) is extensively investigated in this configuration along with modeling and analysis. The capturing force is identified and completely confirmed as the acoustic radiation force through several experiments. Effects of the frequency and amplitude of acoustic excitation on capturing are quantified with high-speed imaging. The bubble elimination process is modeled by two sequential steps: catalytic reaction and dissolving process.In addition, the similar operations of capturing, carrying, releasing of objects are accomplished only using AC-EWOD, not using the acoustic excitation. In this case, the AC voltage (optimal frequency of 100 Hz) not only oscillates the bubble but also transports the oscillating bubble on the surface. However, the carrying efficiency is lower than the simultaneous actuations of acoustic excitation and EWOD. The second type of object manipulation system utilizes the capturing phenomenon by oscillating bubble. The main feature is that the oscillating bubble is deposited on a 3-D traversing rod tip, rather than a two-dimensional surface. So, it allows for object manipulation in a 3-D space. It is concluded from multiple experiments that the maximum carrying speed is highest near the bubble resonant frequency, meaning that the capturing force is proportional to the bubble oscillation amplitude.Finally, the cavitational streaming flow is extended to underwater propulsion. The key concept is to utilize the net momentum flux around the oscillating bubble. As a reaction force, the net momentum flux pushes or pulls the solid substrate on which the oscillating bubble sits. Using mini/micro glass rods, the propulsion mechanism is experimentally proved. The propulsion force is measured to be hundreds of nano-Newtons in a pendulum configuration.
机译:本论文涉及利用振荡气泡对微小物体的新颖操纵技术的发展。研究和应用的两个主要物理原理是空化微流流动和气泡中电介电(EWOD)驱动的电润湿。使用这两个原理在2-D和3-D空间中振荡和处理的微/微型气泡是用作要操纵的对象的载体的关键组件。第一种操纵系统使我们能够操纵二维空间上的微型/微型对象。在此配置中,连同建模和分析一起,广泛研究了一系列气泡操作(创建,消除和运输)和对象操作(捕获,携带和释放)。通过几次实验,确定了捕获力并将其完全确认为声辐射力。声激发的频率和幅度对捕获的影响可以通过高速成像进行量化。消除气泡的过程由两个连续的步骤建模:催化反应和溶解过程。此外,仅使用AC-EWOD而不是使用声激发来完成类似的捕获,携带,释放物体的操作。在这种情况下,交流电压(最佳频率为100 Hz)不仅使气泡振荡,而且还在表面上传输振荡的气泡。然而,携带效率低于同时激励声激励和EWOD。第二种类型的物体操纵系统通过振荡气泡来利用捕获现象。主要特征是振荡气泡沉积在3-D横动杆尖端上,而不是二维表面上。因此,它允许在3-D空间中进行对象操纵。通过多次实验得出结论,在气泡共振频率附近,最大携带速度最高,这意味着捕获力与气泡的振荡幅度成正比。最后,空化流扩展到水下推进。关键概念是利用围绕振荡气泡的净动量通量。作为反作用力,净动量通量推动或拉动带有气泡的固体衬底。使用微型/微型玻璃棒,通过实验证明了推进机理。在摆配置中,推进力被测量为数百纳米牛顿。

著录项

  • 作者

    Chung Sang Kug;

  • 作者单位
  • 年度 2011
  • 总页数
  • 原文格式 PDF
  • 正文语种 en
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号