首页> 外文OA文献 >Metrics and Algorithms for Processing Multiple Continuous Queries
【2h】

Metrics and Algorithms for Processing Multiple Continuous Queries

机译:处理多个连续查询的度量标准和算法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Data streams processing is an emerging research area that is driven by the growing need for monitoring applications. A monitoring application continuously processes streams of data for interesting, significant, or anomalous events. Such applications include tracking the stock market, real-time detection of diseaseoutbreaks, and environmental monitoring via sensor networks.Efficient employment of those monitoring applications requires advanced data processing techniques that can support the continuous processing of unbounded rapid data streams. Such techniques go beyond the capabilities of the traditional store-then-query Data BaseManagement Systems. This need has led to a new data processing paradigm and created a new generation of data processing systems,supporting continuous queries (CQ) on data streams.Primary emphasis in the development of first generation Data Stream Management Systems (DSMSs) was given to basic functionality. However, in order to support large-scale heterogeneous applications that are envisioned for subsequent generations of DSMSs, greater attention willhave to be paid to performance issues. Towards this, this thesis introduces new algorithms and metrics to the current design of DSMSs.This thesis identifies a collection of quality ofservice (QoS) and quality of data (QoD) metrics that are suitable for a wide range of monitoring applications. The establishment of well-defined metrics aids in the development of novel algorithms that are optimal with respect to a particular metric. Our proposed algorithms exploit the valuable chances for optimization that arise in the presence of multiple applications. Additionally, they aim to balance the trade-off between the DSMS's overall performance and the performance perceived by individual applications. Furthermore, we provide efficient implementations of the proposed algorithms and we also extend them to exploit sharing in optimized multi-query plans and multi-stream CQs. Finally, we experimentally show that our algorithms consistently outperform the current state of the art.
机译:数据流处理是一个新兴的研究领域,受到对监视应用程序的日益增长的推动。监视应用程序会连续处理数据流,以处理有趣的,重要的或异常的事件。这些应用包括跟踪股票市场,实时检测疾病暴发以及通过传感器网络进行环境监控。要有效利用这些监控应用,就需要先进的数据处理技术,以支持对无限制的快速数据流的连续处理。此类技术超越了传统的存储后查询数据库管理系统的功能。这种需求催生了新的数据处理范例,并创建了新一代的数据处理系统,支持对数据流的连续查询(CQ)。第一代数据流管理系统(DSMS)的开发主要重点是基本功能。 。但是,为了支持为下一代DSMS设想的大规模异构应用程序,必须更加注意性能问题。为此,本文为DSMS的当前设计引入了新的算法和指标。本文确定了适用于多种监控应用的服务质量(QoS)和数据质量(QoD)指标的集合。定义明确的度量标准的建立有助于开发相对于特定度量标准最佳的新颖算法。我们提出的算法利用了存在多个应用程序时进行优化的宝贵机会。此外,它们旨在平衡DSMS的整体性能与单个应用程序感知的性能之间的折衷。此外,我们提供了所提出算法的有效实现,并且还将它们扩展为在优化的多查询计划和多流CQ中利用共享。最后,我们通过实验证明了我们的算法始终优于当前的技术水平。

著录项

  • 作者

    Sharaf Mohamed;

  • 作者单位
  • 年度 2007
  • 总页数
  • 原文格式 PDF
  • 正文语种 {"code":"en","name":"English","id":9}
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号